## Mid Coast Timber Supply Area Timber Supply Review #3

## **Analysis Report**

Version 2.1

May 10, 2010

## **Prepared For:**

## Mid Coast TSA Licensee/Agency Group:

International Forest Products Ltd.

(INTERFOR)

Western Forest Products Inc.

WESTERN FOREST PRODUCTS INC.

British Columbia Timber Sales

BCTS BC Timber Sales

## Submitted By:

Forsite Consultants Ltd. Box 2079, 330-42<sup>nd</sup> Street SW Salmon Arm, B.C. V1E 4R1 (250) 832-3366



# Mid Coast TSR3 Timber Supply Analysis Report

## PROFESSIONAL FORESTER CERTIFICATION

This Report was prepared by:



An original, master hardcopy is signed, stamped and archived at the office of the Forest Analysis and Inventory Branch, Ministry of Forests and Range, Victoria, B.C.

Cam Brown, MF, RPF Forsite Consultants Ltd. Box 2079, 330-42<sup>nd</sup> Street SW Salmon Arm, B.C. V1E 4R1 (250) 832-3366 cbrown@forsite.ca

May 10, 2010



### More Information on the Timber Supply Review Process

This document was prepared to support an allowable annual cut determination by British Columbia's Chief Forester. To learn more about this process please visit the following website:

http://www.for.gov.bc.ca/hts/

Or contact:

Ministry of Forests Forest Analysis and Inventory Branch P.O. Box 9512, Stn. Prov. Govt. Victoria, B.C., V8W 9C2 Telephone: (250) 356-5947

## **Comments and Questions**

Input from First Nations and public is an important part of the Timber Supply Review process and you are encouraged to review the information in this document and forward any comments to Cam Brown, RPF at Forsite in Salmon Arm by **May 18, 2010**.

Mail: Cam Brown, MF, RPF

Forsite Consultants Ltd. Box 2079, 330-42<sup>nd</sup> Street SW Salmon Arm, B.C. V1E 4R1

(250) 832-3366

Email: <a href="mailto:cbrown@forsite.ca">cbrown@forsite.ca</a>

Tel: (250) 832-3366 Fax: (250) 832-3811

Additional copies of this document are available on the web at: <a href="http://www.forsite.ca/MidcoastTSR3/">http://www.forsite.ca/MidcoastTSR3/</a>



## **Acknowledgements**

Forsite would like to thank each of the parties that contributed to the Timber Supply Review process in the Mid Coast TSA. The time and commitment provided by everyone contributed greatly to this document and allowed it to be completed in a timely fashion.

The support and contributions from the following people and organizations was instrumental in the compilation of this document:

International Forest Products Ltd.

Mike Landers

Angus Hope Gerry Sommers Joe Leblanc

Western Forest Products Ltd. Peter Kofoed

B.C. Timber Sales Bob Brand

Lisa Gibbons

Heiltsuk First Nation Rina Gemeinhardt

Gwa'Sala-'Nakwaxda'xw First Nation Ted Stevens

Kvamua Entreprises Limited Partnership (Wuikinuxv FN), Nuxalk Forestry Limited Partnership (Nuxalk Nation), and

Kitasoo Forest Company Limited (Kitasoo FN).

Corby Lamb Ryan Clark Jason Swanson

MFR – Coast Forest Region Jim Brown

MFR – North Island – Central Coast Forest District Christina Mardell

Jennifer Barolet Paul Barolet Amy Beetham

Forsite Cam Brown

Simón Moreira-Muñoz

Stephen Smyrl

Hans Granander (Subcontractor)

This project was funded by the Forest Investment Account and was coordinated by Ian Robertson / Donna Wilson on behalf of International Forest Products Ltd.

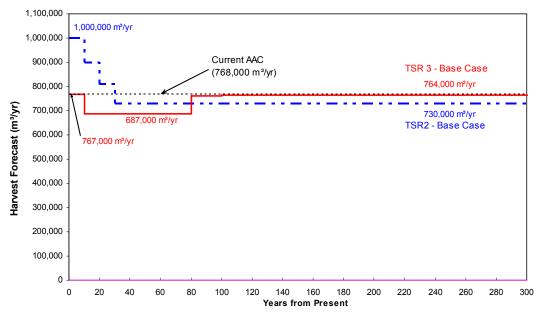
This work was prepared directly by or under the direct supervision of Cam Brown, RPF.

## **Executive Summary**

This document contains a timber supply analysis specific to the Mid Coast Timber Supply Area (TSA). It is an important part of the provincial Timber Supply Review (TSR) process. The purpose of the review is to examine the short- and long-term effects of current forest management practices on the availability of timber for harvesting in the TSA. A review of this type is completed at least once every ten years in order to capture changes in data, practices, policy, or legislation influencing forest management in the TSA.

The previous Timber Supply Review (TSR2) was completed in June 1999 with a final Annual Allowable Cut (AAC) determination on June 1, 2000 establishing an AAC of 998,000 m³/yr. In July of 2002 and September 2006, the Chief Forester set out orders that decreased the AAC because of new Designated Areas (conservancy and biodiversity areas). The AAC has been set at 768,000 m³/yr since September 2006.

The current Mid Coast TSA Timber Supply Data Package provides the detailed technical information and assumptions regarding current forest management practices, policy, and legislation which were used in this analysis. Based on the details in the Data Package, the TSA covers approximately 2.7 million hectares (1.03 million forested hectares) on the coast of British Columbia. The portion of this area considered available for timber production and harvesting under current management practices is called the timber harvesting land base (THLB). The THLB has been estimated through the analysis of spatial map layers and assumptions detailed in the Data Package report. Based on these inputs, the current THLB is estimated to be 123,162 hectares (12% of the TSA).


The release of this Analysis Report is the next step in the Mid Coast TSR3 process. Its purpose is to summarize the results of the timber supply analysis and provide a focus for public discussion. The contents of this Analysis Report will provide British Columbia's Chief Forester with a large portion of the information that is needed to make an informed AAC determination.

This report focuses on the Base Case scenario, which represents current management practices in the Mid Coast TSA. The TSR3 Base Case harvest flow shows an initial harvest level slightly below that of the current AAC for 10 years (767,000 m³/yr) before declining to an average of 687,000 m³/yr for the next 70 years and then rising to a long term harvest level 1% lower than the current AAC (764,000 m³/yr). The short term harvest level is able to remain very close to the current AAC even with the implementation of EBM because of the upward pressure from the revised operable landbase, increased contributions from outer coast and helicopter harvest stands, adjusted site indices, and recognition of volume gains from select seed.

The short and mid term harvest levels in the TSR3 base case are heavily influenced by a pinch point that exists 55-65 years into the future. This is the point where natural stands are no longer dominating the harvest and managed stands are just beginning to come online in a substantial way. It should also be noted that short-mid term harvest forecast is dependant on 20% poor-low hembal volume, 30-35% helicopter harvest volume, and 14-18% outer coast volume. Note that a single stand can fit into all three of these profiles so the percentages can overlap.

The base case flow is substantially different from TSR2 results (figure below) because of changes in assumptions and data used. For example, large areas of new parks and conservancies have been established, two Community Forests have been established, Ecosystem Based Management objectives have been implemented, and new wildlife management strategies are in place. These combine to significantly reduce the short term harvest from that published in TSR2 (998,000 m³/yr). The TSR3 long term harvest flow is just above the TSR2 projection, even with a substantially reduced landbase, because of the much higher yields projected from managed stands (site index adjustments, use of select seed).

## TSR2 vs TSR3 Base Case Harvest Projections



Sensitivity analyses revealed that the short term harvest level is highly dependant on the amount of existing natural stand volume and on achieving merchantable managed stand volumes in a timely manner. Any factors that could delay managed stands from becoming eligible for harvest or any reduction in the amount of natural stand volume on the land base will impact short term harvest levels.

The Pre EBM scenarios revealed that the implementation of the EBM Land Use Orders alone results in a 5-13% timber supply impact in the short term (13% in the long term). When EBM is combined with the parks and conservancies that have been created since 2004, the total impact is a 28-41% timber supply impact in the short to midterm and a 52% impact in the long term.

May 10, 2010 v

## **Table of Contents**

| ACKI       | NOWLEDGEMENTS                                            | II |
|------------|----------------------------------------------------------|----|
| EXEC       | CUTIVE SUMMARY                                           | IV |
| TABL       | LE OF CONTENTS                                           | V  |
| 1.0        | INTRODUCTION                                             | 1  |
| 2.0        | DESCRIPTION OF MID COAST TSA                             | 1  |
| 2.1        |                                                          |    |
| 2.1        |                                                          |    |
| 2.3        |                                                          |    |
| 2.4        |                                                          |    |
| 2.5        |                                                          |    |
| 2.6        |                                                          |    |
| 3.0        | TIMBER SUPPLY ANALYSIS METHODS                           |    |
| 3.1        |                                                          |    |
| 3.2        |                                                          |    |
| 3.3        | MANAGEMENT PRACTICES                                     |    |
|            | 3.3.2 Silviculture                                       |    |
|            | 3.3.3 Timber Harvesting                                  |    |
| 3.4        | FOREST DYNAMICS                                          | 14 |
| _          | 3.4.1 Growth and Yield                                   |    |
| _          | 3.4.2 Disturbances                                       |    |
| 3.5<br>3.6 |                                                          |    |
|            | BASE CASE ANALYSIS                                       |    |
| 4.0        |                                                          |    |
| 4.1        |                                                          |    |
| 4.2        |                                                          |    |
| 4.3        | BASE CASE ATTRIBUTES                                     |    |
|            | 4.3.2 Harvest Attributes                                 |    |
|            | 4.3.3 Age Class Distribution                             |    |
| 4.4        | 00:10:11:11:10:0                                         |    |
|            | 4.4.1 Harvest Profiles                                   |    |
|            | 4.4.2 Landscape-level Biodiversity for Old and Mid Seral |    |
|            | 4.4.3 Black Tailed Deer Winter Range                     |    |
|            | 1.4.4 Upland stream                                      |    |
|            | •                                                        |    |
| 5.0        | BASE CASE DIFFERENCES FROM TSR2                          | 30 |
| 6.0        | BASE CASE SENSITIVITY ANALYSES                           | 32 |
| 6.1        | SIZE OF TIMBER HARVESTING LAND BASE                      | 33 |
| 6.2        | NATURAL STAND YIELDS                                     | 34 |
| 6.3        |                                                          |    |
| 6.4        |                                                          |    |
| 6.5        | MINIMUM HARVEST AGES                                     | 38 |

| 6.6 MANAGE CEDAR HARVEST PROFILE                                                            |         |
|---------------------------------------------------------------------------------------------|---------|
| 6.7 Drop Grizzly EBM Requirements                                                           |         |
| 6.8 'RISK MANAGED' OLD SERAL REQUIREMENTS                                                   |         |
| 6.9 OUTER COAST AND OWIKENO HARVEST PROFILES                                                | 44      |
| 6.10 PRE EBM SCENARIOS                                                                      | 46      |
| 7.0 SUMMARY AND RECOMMENDATIONS                                                             | 49      |
| 8.0 REFERENCES                                                                              | 52      |
| APPENDIX 1 — ACRONYMS                                                                       | 53      |
| APPENDIX 2 – RED AND BLUE LISTED SPECIES THAT OCCUR OR HAVE THE POTEN                       |         |
| OCCUR IN MID COAST TSA                                                                      | _       |
| APPENDIX 3 – DATA INPUTS AND MODELING ASSUMPTIONS                                           | 57      |
|                                                                                             |         |
| list of Tobles                                                                              |         |
| <u>List of Tables</u>                                                                       |         |
| Table 1. Land base area netdown summary                                                     | 11      |
| Table 2. Areas by land base type where forest cover constraints were applied                | 13      |
| Table 3. TSR3 sensitivity analyses completed on the current practice base case              | 32      |
| Table 4. Comparison of VDYP6 and VDYP7 inventory volumes for THLB stands >60 yrs old        | J36     |
| Table 5. Comparison of VDYP6 and VDYP7 inventory (THLB >60 yrs old) by leading species      |         |
| Table 6. Landbase netdowns for the Pre EBM scenarios                                        |         |
| Table 7. Summary of Sensitivity Analysis Results                                            | 50      |
| List of Figures  Figure 4. Mid Coast TSA Leadhese Overview Man                              | 2       |
| Figure 1. Mid Coast TSA Landbase Overview Map                                               |         |
| Figure 2. BEC Zones present in Mid Coast TSA                                                |         |
| Figure 4. TSA Land base Breakdown                                                           |         |
| Figure 5. Mid Coast TSA Land Base Classification Map                                        |         |
| Figure 6. Mid Coast TSA area by leading species and land base classification (Spatial THLI  |         |
| Figure 7. Mid Coast TSA area by leading species and fand base classification (Spatial THE). | זד<br>7 |
| Figure 8. Spatial THLB area by age class and leading species                                |         |
| Figure 9. Spatial THLB area by leading species relative to the minimum harvest age (MHA)    |         |
| Figure 10. Site index distribution (inventory) for the Mid Coast TSA (Spatial THLB)         |         |
| Figure 11. Inventory and adjusted site index distributions for the Mid Coast Spatial THLB   |         |
| Figure 12. Areas by land base type where forest cover constraints were applied (Spatial TH  |         |
| Figure 13. Total gross inventory by species in the spatial THLB                             |         |
| Figure 14. Alternative harvest forecasts for the TSR3 base case assumptions                 | 18      |
| Figure 15. Base case harvest forecast for the Mid Coast TSA relative to the current AAC     |         |
| Figure 16. Merchantable and total growing stock on the THLB for the base case harvest flow  |         |
| Figure 17. Natural vs managed stand harvest profile for the base case                       |         |
| Figure 18. Base case harvest flow by tree species volumes                                   |         |
| Figure 19. Average harvest age, area, and vol/ha for the base case                          |         |
| Figure 20. Age class distributions at year 0, 50, 100, and 200 for the base case forecast   | 24      |
| Figure 21. Harvest volume contributions from outer coast and poor-low hemlock/balsam par    |         |
| Figure 22. Harvest contribution from helicopter harvest systems and Owikeno watershed ar    |         |
| Figure 23. Old growth and mid seral forests relative to aggregated targets (Mid Coast TSA I |         |

AFORSITE

| Figure 24. | THLB area with tight constraints (actively limiting harvest) from old and mid seral limits | . 27 |
|------------|--------------------------------------------------------------------------------------------|------|
| Figure 25. | Aggregated forest cover requirements for black tailed deer winter range                    | .28  |
| Figure 26. | Forest cover requirements for black tailed deer in the Machmell LU                         | .28  |
| Figure 27. | Total upland stream area and area with stands < 9 m tall by Ministerial Order              | . 29 |
| Figure 28. | LU level examples of upland stream conditions relative to maximum limits                   | .29  |
| Figure 29. | Mid Coast TSA TSR2 and TSR3 base case harvest projections                                  | .30  |
| Figure 30. | Alternative Timber Harvesting Land Base harvest forecasts                                  | .34  |
| Figure 31. | Alternative natural stand yield harvest forecasts                                          | . 35 |
| Figure 32. | Harvest forecast using increased dispersed retention in highly constrained visual areas    | . 38 |
| Figure 33. | Minimum harvest ages increased (a) and decreased (b) by 10 years                           | . 39 |
| Figure 34. | Manage cedar profile to a minimum of 30% of the periodic harvest level                     | .40  |
| Figure 35. | Transition of natural stands to managed stands: base case vs manage cedar profile          | 41   |
| Figure 36. | Harvest flow estimation by species: base case vs manage cedar profile                      | .41  |
| Figure 37. | Impact of allowing harvesting in a portion of the mapped EBM Grizzly habitat               | .42  |
| Figure 38. | Harvest flow using EBM Risk-Managed targets for old seral requirements                     | .43  |
| Figure 39. | Owikeno watersheds with operability concerns as identified by MFR                          | .44  |
|            | Harvest forecast with alternative limits on outer coast and Owikeno harvest contributions  |      |
|            | Harvest volume contribution over time from the outer coast when limited to 20% and 10%     | 46   |
| Figure 42. | Harvest profile on the Owikeno deferral and exclusion areas relative to the base case      | .46  |
| Figure 43. | Pre FBM harvest forecasts                                                                  | .48  |

May 10, 2010 viii

## 1.0 Introduction

Timber supply is the amount of timber that is available for harvest over time. Assessing timber supply involves consideration of a wide range of physical, biological, social, and economic factors that can influence the acceptable rate of timber harvesting within a management unit. These factors encompass both the timber and non-timber values found in our forests and ensure that timber harvesting objectives are balanced against social and ecological values such as wildlife, biodiversity, watershed health, recreational opportunities, etc.

This document contains a timber supply analysis specific to the Mid Coast Timber Supply Area (TSA 19). The general objective of the analysis is to examine the short and long term effects of current forest management practices on the availability of timber for harvesting in the TSA. A review of the projected timber supply is typically completed once every five to ten years in order to capture changes in data, practices, policy, or legislation influencing forest management in the TSA. The previous Timber Supply Review (TSR2) was completed in June 1999 with a final Annual Allowable Cut (AAC) determination on June 1, 2000 establishing an AAC of 998,000m<sup>3</sup>/yr. In July of 2002 and September 2006, the Chief Forester set out orders that decreased the AAC because of new designated areas (conservancy and biodiversity areas). The AAC has been set at 768,000m<sup>3</sup>/yr since September 2006. The current TSR process will work towards having all work completed by May 15, 2010 so that a new AAC determination can be in place by June 2010.

The Mid Coast TSR3 Data Package, a document providing detailed technical information and assumptions regarding current forest management practices, policy and legislation for use in this analysis, was released on October 20, 2009 and was accepted by the Forest Analysis and Inventory Branch on November 5, 2009. The release of this Analysis Report is the next step in the timber supply analysis process. Its purpose is to summarize the results of the timber supply analysis, provide a focus for public discussion, and provide British Columbia's Chief Forester with much of the information that is needed to make an informed AAC determination. This report does not define a new AAC - it is intended only to provide insight into the likely future timber supply of the TSA. The final harvest level will be determined by the Chief Forester and published along with his rationale in an AAC Determination document.

This report focuses on a forest management scenario that reflects current management practices in the TSA. The "Base Case Scenario" becomes the basis for sensitivity analyses that assessed how results might be affected by uncertainties in data or assumptions. Together these analyses form a solid foundation for discussions with the government and stakeholders in the determination of an appropriate timber harvesting level.

#### **Description of Mid Coast TSA** 2.0

#### 2.1 Location

The Mid Coast TSA is located on the central coast of British Columbia and covers approximately 2.7 million ha. The Mid Coast TSA is administered by the North Island – Central Coast Forest District and extends from Cape Caution in the south to Sheep Passage in the north and is bordered by the Pacific Ocean to the west and Tweedsmuir Park to the East (Figure 1). The northern boundary is made up of Tree Farm License (TFL) 25, the Fiordland Recreation Area, and the Kitlope Heritage Conservancy Protected Area.

The Mid Coast TSA exhibits high levels of diversity in landscape, wildlife, and culture. Diverse populations of both marine and terrestrial wildlife exist in the TSA. The TSA's forests are also culturally rich and diverse. Archaeological work has yielded evidence of some of the oldest First Nation's habitations on the BC coast.

The Mid Coast TSA is remote and sparsely populated, with the majority of the population living in the Bella Coola valley. Other populated areas include small isolated communities along the outer coast.

May 10, 2010 1



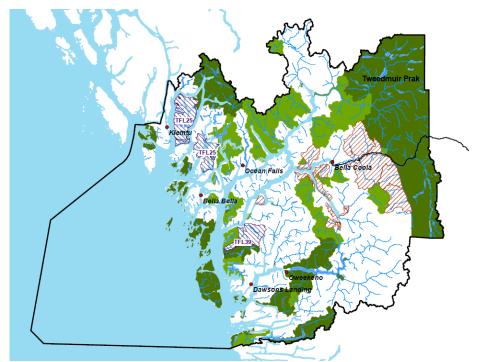



Figure 1. Mid Coast TSA Landbase Overview Map (note: portions of the TFL's are now in the Pacific TSA)

The terrain is rugged and variable including low lying islands, outlying coastal mainland areas, inland mountainous regions, high elevation non-forested areas, and productive valley bottom steep sided inlets. The forests of the Mid Coast are dominated by four main biogeoclimatic zones as illustrated in Figure 2 below and include Coastal Western Hemlock (CWH), Mountain Hemlock (MH), Engelmann Spruce Subalpine Fir (ESSF), and alpine (CMA). Other zones such as IDF, MS, SBPS, and SBS exist in the transition zone to the interior ecosystems that is contained entirely within Tweedsmuir Park.

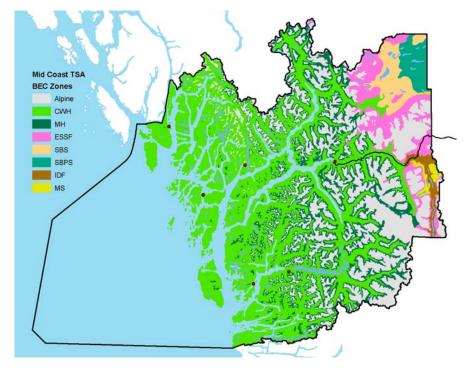



Figure 2. BEC Zones present in Mid Coast TSA

Only a small portion of the total TSA area is forested (38%) and an even smaller portion is suitable for timber harvesting (12%). Most harvesting is confined to valley bottoms and sidewalls. Most of the remaining areas are either protected areas or "high country" areas too rugged to support marketable timber.

The ruggedness has minimized human use; hence there are few settlements and little private land (9,305 ha). There is only one highway (Hwy 20) on the east side that connect Bella Coola to the BC Interior. The rest of the TSA is only accessed using marine routes.

## 2.2 Wildlife

The Mid Coast TSA exhibits high levels of diversity in wildlife. Grizzly bears, black tailed deer, mountain goat, sandhill crane, marbled murrelet, tailed frog, and goshawk are some of the most important species found in the area. These species have become a very important management issue and they are an integrated component of the current analysis.

The Province has identified a number of wildlife species that might be at risk due to declining populations across the province that occur or have the potential to occur in the TSA. There are several red-listed species (Endangered or Threatened) and blue-listed species (Species of Concern) including vertebrate animals and vascular plants (Appendix 2 – Red and Blue listed species that occur or have the potential to occur in Mid Coast TSA.

## 2.3 First Nations

The following First Nations have traditional territory within the Midcoast timber supply area.

#### Gwa'Sala-Nakwaxda'xw First Nation

The Gwa'Sala-Nakwaxda'xw Nation (GNN) traditional territory straddles the southern boundary of the Mid Coast Timber Supply Area and includes the watersheds draining into Smith Inlet. The GNN people primarily live on North Vancouver Island on the Tsulquate reserve at Port Hardy. The current population of the Nation is 692 people (<a href="www.aboriginalcanada.gc.ca">www.aboriginalcanada.gc.ca</a>). The GNN have a Forest Agreement with the Province which provides rights to harvest 188,000 m³ over a five year period from the Kingcome TSA. This agreement expires in 2010.

#### **Heiltsuk First Nation**

The Heiltsuk Nation is based at Bella Bella on Campbell Island. With a current population of 2,017 (<a href="www.aboriginalcanada.gc.ca">www.aboriginalcanada.gc.ca</a>) the Heiltsuk is the largest First Nation in the Mid Coast. Similarly, their territory is expansive reaching from the Dean River in the north-east to Rivers Inlet in the south and Fraser Reach in the north-west. The Heiltsuk are very active in forestry and their Forest Agreement, which is due to expire in 2010, accesses a total of 485,000 m<sup>3</sup>. Of this volume, 100,000 m<sup>3</sup> would be sourced from block 7 of TFL #39 (now Pacific TSA).

#### Kitasoo-Xai'xais First Nation

The village of Klemtu on Swindle Island is the home to the Kitasoo-Xai'xais First Nation. The current Kitasoo population is 483 people (<a href="www.aboriginalcanada.gc.ca">www.aboriginalcanada.gc.ca</a>). Similar to the Heiltsuk, the Kitasoo's Forest Agreement is due to expire in 2010. Their Forest Agreement was for a total of 115,000 m³, of which 40,000 m³ was available from TFL #25.

#### **Nuxalk First Nation**

The Nuxalk Nation is based in Bella Coola and their ancestral territory spans the inner coast and includes the watersheds draining into Burke and Dean Channels and North and South Bentinck Arms. Their population is 1,315 (<a href="www.aboriginalcanada.gc.ca">www.aboriginalcanada.gc.ca</a>) and they recently started forestry operations on their Probationary Community Forest Agreement (PCFA) licence. In 2007, the Nuxalk signed a Forest Agreement with the Province which provides harvesting rights to 311,000 m<sup>3</sup> over a five year period in the Mid Coast TSA.

May 10, 2010 3



#### **Ulkatcho First Nation**

The Ulkatcho Nation is based at Anahim Lake. Despite much of their traditional territory being located outside of the North Island – Central Coast Forest District, a portion of it does overlap with the Mid Coast TSA. The majority of this overlap is located in the Kimsquit area - which is to the east and north of the head of the Dean Channel. The Ulkatcho population is 927 (<a href="www.aboriginalcanada.gc.ca">www.aboriginalcanada.gc.ca</a>) and they have a Forest Agreement to harvest 232,000 m<sup>3</sup> in the Williams Lake TSA over a 5 year period that began in 2006.

#### **Wuikinuxy Nation**

The Wuikinuxv Nation territory encompasses the central part of the Mid Coast TSA and includes the watersheds draining into Oweekeno Lake and Rivers Inlet and the associated outer islands. Most of the 250 band members live outside the territory while approximately 50 people (<a href="www.aboriginalcanada.gc.ca">www.aboriginalcanada.gc.ca</a>) live in Wuikinuxv village at the head of Rivers Inlet. The Wuikinuxv have been actively harvesting timber since the 1990's in a variety of joint venture arrangements and through the opportunities created by their Forest Agreement. This agreement is due to expire in 2010. The Forest Agreement provides them with a total of 60,000 m³ over a five year period from the Mid Coast TSA. The Wuikinuxv Nation also has an Interim Measures Agreement with the Province that provides them an additional 200,000 m³ from the Mid Coast TSA over a five year period.

## 2.4 The Environment

The TSA contains seven biogeoclimatic zones: Coastal Western Hemlock (CWH), Engelmann Spruce - Subalpine Fir (ESSF), Interior Douglas-Fir (IDF), Mountain Hemlock (MH), Montane Spruce (MS), Sub-Boreal Pine – Spruce (SBPS), and Sub-Boreal Spruce (SBS). The majority of the TSA's timber harvesting occurs in the CWH with the following variant level distribution: CWH vh2 (31%), CWH vm1 (30%), CWH ms2 (16%), CWH ws2 (9%), and CWH vm2 (7%). Most of the THLB (75%) occurs in the Natural Disturbance Type 1 (NDT1) and the rest in NDT2 (Figure 3) although this classification was replaced by the Range of Natural variation (RONV) concepts developed as part of the coastal Ecosystem Based Management (EBM) process. This is discussed in more detail in 3.4.2 and in Appendix 3 – Data Inputs and Modeling Assumptions.

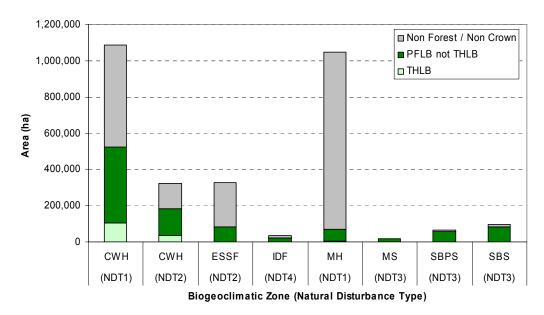



Figure 3. Biogeoclimatic Zone and Natural Disturbance Type by landbase classification

## 2.5 Integrated Resource Management Considerations

Integrated resource management is a basic premise for the practice of forestry in the TSA. Timber harvesting is planned and managed in such a way that allows a wide range of other values to co-exist on the landbase. The manner in which each value is considered is dictated by federal or provincial legislation or BC Government policy. Much of this direction for the Mid Coast TSA comes from the recent Land Use Orders (EBM Orders) that became legal in March of 2009, and from the Forest and Range Practices Act (FRPA) and its regulations.

These documents address the legislated requirements for a wide range of non-timber issues. The most significant issues influencing forest management in the Mid Coast TSA are:

- Biodiversity (old forests and forest structure)
- Water and Fisheries issues (Riparian / Fish Habitat / Watershed Health)
- Rare and Endangered Species Habitats
- Wildlife Habitat (Grizzly Bear, Black Tailed Deer, Mountain Goat)
- First Nation Values (cultural and traditional uses of the forest)
- Visually Sensitive Areas
- Recreation Values

The areas affected by these non-timber resource values and the specific forest management practices required to address them are discussed in Section 3.3.1 and in Appendix 3 – Data Inputs and Modeling Assumptions.

## 2.6 Current Attributes of Mid Coast TSA

This section of the document describes the current state of the TSA and provides descriptions and statistics useful for understanding the timber supply analyses presented later in the document. The Timber Harvesting Land Base (THLB) and the Productive Forest Land Base (PFLB) are referenced in this section and defined in detail in Section 3.1.

Approximately 34% of the total area of the TSA is considered productive forest land (Figure 5). The remaining area is made up of non productive land (56%) such as rock and ice, and 10% non TSA land (e.g. private, Indian Reserve, TFL's, Community Forests, unreverted Timber License's, etc.). Within the TSA's productive forest land base, 48% of currently in parks and protected areas, while only 12% (4% of the total TSA area) is considered available for timber harvesting (Figure 4). A detailed area summary of the landbase can be found in Table 1 in section 3.1. A coarse map illustrating the locations of PFLB and THLB in the TSA is shown in Figure 5.

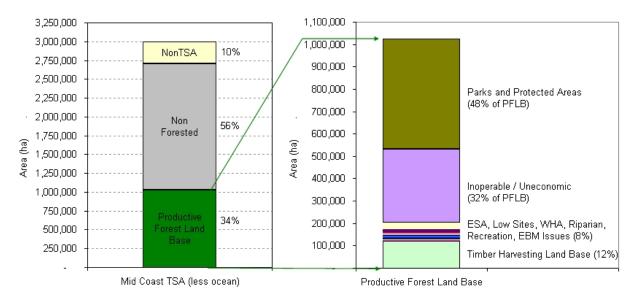



Figure 4. TSA Land base Breakdown

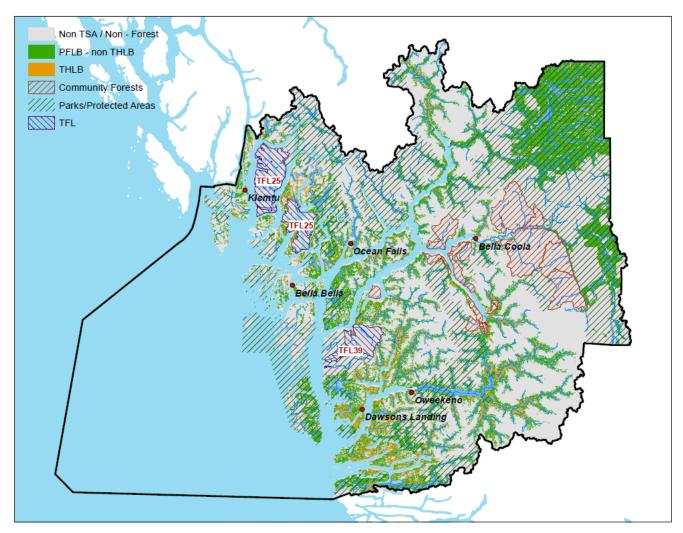



Figure 5. Mid Coast TSA Land Base Classification Map (note: portions of the TFL's are now in the Pacific TSA)

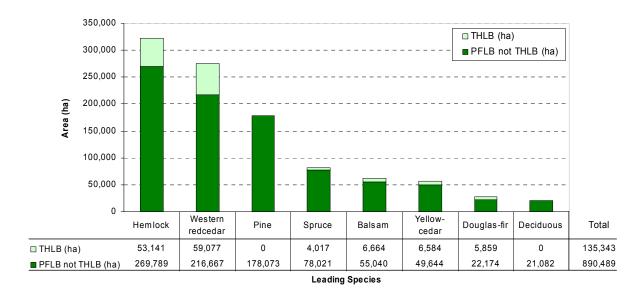



Figure 6. Mid Coast TSA area by leading species and land base classification (Spatial THLB)

The forests of the TSA are dominated by hemlock and red cedar leading stands, followed by pine, spruce, balsam, yellow-cedar, Douglas-fir, and deciduous leading stands. An overview of the area by leading species for the TSA in 2009 is provided in Figure 6.

The age class structure over the entire productive land base is shown in Figure 7. The x-axis shows the upper limit of the age class (e.g. 20 summarizes ages between 11 and 20 inclusive). The PFLB area is distributed across a wide range of age classes, but the subset of the landbase where forestry is practiced (THLB) tends to have areas clumped into young (0-50 years) or old (>300 year) stands. The PFLB has a wider range of age classes because the diversity of ecosystems within Tweedsmuir Park contains stands which are naturally disturbed more frequently than the coastal CWH/MH ecosystems that make up the THLB.

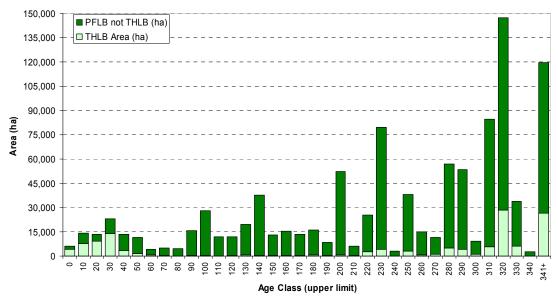



Figure 7. Mid Coast TSA age class distribution in 2009 (Spatial THLB).

The THLB area is broken down by species and age in Figure 8. It shows that stands established 20-40 years ago were dominantly hemlock leading, while more recent stands have a larger component of cedar.

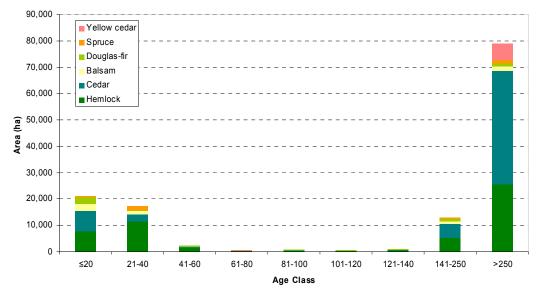



Figure 8. Spatial THLB area by age class and leading species

Figure 9 shows the THLB area by leading species relative to the minimum harvest age (MHA). Due to the high concentration of old seral stands, 68% of the area is above the minimum harvest age (i.e. eligible for harvest). Western red cedar and yellow cedar leading stands have the highest proportion of area older than the MHA, with 80% and 97%, respectively. Hemlock leading stands have only 60% of their area older than their MHA, indicating that hemlock leading stands make up a higher proportion of regenerating stands.



Figure 9. Spatial THLB area by leading species relative to the minimum harvest age (MHA)

Growth and yield practitioners in BC generally agree that site index estimates from photo-interpreted height and age of old natural stands under-estimate the height growth observed in post-harvest regenerated stands growing on the same sites. Thus, the inventory site index distribution shown in Figure 10 was adjusted in a Site Index Adjustment project (SIA) done by Timberline Natural Resource Group and is shown in Figure 11. Overall, the weighted average inventory site index on the THLB is 17.2m. This increases by

5.3m to 22.5m when adjusted SI's are used for managed stands (note: adjustments only applied to cedar and hemlock leading stands). This adjusted SI is only relevant once all stands have transitioned to managed stand yield curves post harvesting.

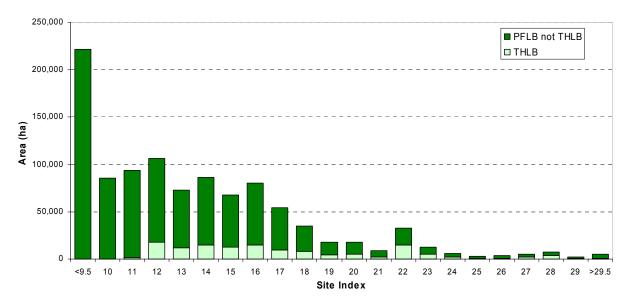



Figure 10. Site index distribution (inventory) for the Mid Coast TSA (Spatial THLB)

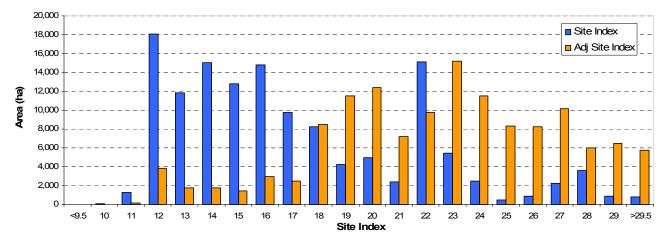



Figure 11. Inventory and adjusted site index distributions for the Mid Coast Spatial THLB

## 3.0 Timber Supply Analysis Methods

A large amount of information is required to complete a timber supply analysis. Information must be obtained in four broad categories: land base, forest inventory, management practices, and forest dynamics. This information is then translated into a model formulation that can explore sustainable rates of harvest in the context of integrated resource management. This section provides a brief summary of the data inputs, assumptions, and modeling procedures fully described in Appendix 3.

## 3.1 Land Base Definition

The Productive Forest Land Base (PFLB) is the subset of the TSA that is considered forested and able to contribute towards non timber values such as forest based biodiversity. The non forested portion of the landbase also supports a wide variety important ecosystems and values but is not discussed here because it is not impacted by forestry practices. The PFLB excludes non-crown land, tree farm license areas, community forests, First Nation Reserves, non-forest / non-productive areas, etc. Any Timber Licenses that have not yet been harvested are excluded from the TSA until they are harvested or the license expires. The areas that were formerly TFL39 Block 7 and the Yeo Island portion of TFL 25 Block 5 are now within the Pacific TSA<sup>1</sup>.

The Timber Harvesting Land Base (THLB) is the subset of the TSA's land base where timber harvesting is expected to occur in the future<sup>2</sup>. The THLB modeled here is only an estimate of the actual THLB that will be established in the field. It excludes areas that are inoperable or uneconomic for timber harvesting and areas that are reserved for non-timber values. The THLB is entirely contained within the PFLB. Table 1 summarizes the land base for Mid Coast TSA.

May 10, 2010

10 AFORSITE

<sup>&</sup>lt;sup>1</sup> Source: http://www.for.gov.bc.ca/hth/timten/pacific-tsa.htm.

<sup>&</sup>lt;sup>2</sup> The THLB used in this analysis excludes 10,499 ha of previously harvested area (presently young and mid seral) that did not appear to meet economic harvest criteria but only 7,875 ha were outside of other netdowns. Thus, only 83% of previously logged areas in the TSA were considered operable in the future. The inclusion of this area is explored in a sensitivity analysis later in this document because it is uncertain whether these stands should be included/excluded.

Table 1. Land base area netdown summary

|                                                    |                    | Base Case               |            |           |
|----------------------------------------------------|--------------------|-------------------------|------------|-----------|
| Land Base Element                                  | Total Area<br>(ha) | Effective*<br>Area (ha) | %<br>Total | %<br>PFLB |
| Total area (Mid Coast TSA Bdy – less ocean)        | 2,994,120          | 2,994,120               |            |           |
| Less:                                              |                    |                         |            |           |
| Private Land, Indian Reserves                      | 14,365             | 14,365                  |            |           |
| TFL's, CFA's, Misc Leases, Etc                     | 263,393            | 263,393                 |            |           |
| Timber License's (unreverted)**                    | 5,279              | 5,279                   |            |           |
| Total TSA Area                                     | 2,711,083          | 2,711,083               | 100.0%     |           |
| Non forest / Non-productive forest                 | 1,681,250          | 1,681,250               | 61.6%      |           |
| Non-Commercial Brush                               | 480                | 480                     | 0.4%       |           |
| Existing Roads, Trails and Landings                | 4,937              | 3,521                   | 0.1%       |           |
| Total Productive Forest Land Base*** (PFLB)        | 1,025,831          | 1,025,831               | 37.8%      | 100%      |
| Less:                                              |                    |                         |            |           |
| Parks and Ecological Reserves                      | 495,133            | 495,133                 | 18.3%      | 48.3%     |
| Inoperable/Inaccessible                            | 819,219            | 327,229                 | 12.1%      | 31.9%     |
| Environmentally Sensitive Areas (ESA's)            | 261,632            | 28,977                  | 1.1%       | 2.8%      |
| Non-Merchantable or Problem Forest Types           | 196,865            | 33                      | 0.0%       | 0.0%      |
| Low Productivity Sites                             | 177,662            | 17,819                  | 0.7%       | 1.7%      |
| Grizzly Wildlife Habitat Areas (WHA's)             | 13,661             | 3,755                   | 0.1%       | 0.4%      |
| Mountain Goat Winter Range                         | 29,985             | 65                      | 0.0%       | 0.0%      |
| FRPA Riparian (not including S6's)                 | 17,433             | 6,240                   | 0.2%       | 0.6%      |
| Recreation Values                                  | 10,470             | 3,466                   | 0.1%       | 0.3%      |
| EBM – High Valve Fish Habitat (Obj. 9)             | 5,782              | 1,603                   | 0.1%       | 0.2%      |
| EBM – Non High Value Aquatic Habitat (Obj. 10)     | 6,630              | 2,094                   | 0.1%       | 0.2%      |
| EBM – HVFH Kimsquit River (Obj. 9)                 | 5,693              | 1,150                   | 0.0%       | 0.1%      |
| EBM – Active Fluvial Units (Obj. 13)               | 1,133              | 264                     | 0.0%       | 0.0%      |
| EBM – Grizzly Bear Habitat (Obj. 17)               | 42,420             | 2,662                   | 0.1%       | 0.3%      |
| Spatial Timber Harvesting Land Base (ha)           |                    | 135,343                 | 5.0%       | 13.2%     |
| Non Spatial Netdowns Applied to Each THLB Polygon: |                    |                         |            |           |
| FRPA Riparian – S6's = 0.3%                        |                    | 406                     | 0.0%       | 0.0%      |
| EBM – Arch/FN (Obj. 4-7) = 1.3%                    |                    | 1,759                   | 0.1%       | 0.2%      |
| EBM – Red and Blue (Obj. 15) = 3.0%                |                    | 4,060                   | 0.1%       | 0.4%      |
| EBM – Stand Level Retention (Obj. 16) = 4.4%       |                    | 5,955                   | 0.2%       | 0.6%      |
| Effective Timber Harvesting Land Base (ha)         |                    | 123,162                 | 4.5%       | 12.0%     |
| Future Reductions:                                 |                    | 0.740                   | 0.40/      | 0.20/     |
| Future roads, trails and landings                  |                    | -2,713                  | 0.1%       | 0.3%      |
| Future Gains:                                      |                    | . 5 070                 | 0.00/      | 0.50/     |
| TL Reversions ****                                 |                    | +5,279                  | 0.2%       | 0.5%      |
| Long Term Timber Harvesting Land Base (ha)         |                    | 125,728                 | 4.6%       | 12.3%     |

<sup>\*</sup> Effective netdown area represents the area that was actually removed as a result of a given factor. Removals are applied in the order shown above, thus areas removed lower on the list do not contain areas that overlap with factors that occur higher on the list. For example, the ESA netdown only removes area from the crown, operable forested land base.

<sup>\*\*</sup> The total unreverted TL's area is 19,791 ha

<sup>\*\*\*</sup> Productive forest in this context denotes the forest area that contributes to forest management objectives, such as landscape-level biodiversity, wildlife habitat and visual quality. It does not include alpine forest or Non productive areas with tree species.

<sup>\*\*\*\*</sup> The THLB was underestimated by 476 hectares for the first period of the planning horizon because TL's 994, 990, and 462 were treated as not reverted when in fact they have already reverted to the TSA. Once the TL's have all reverted to the TSA (period 2) the issue no longer exists but stands are ~10yr younger than they should be.

## 3.2 Forest Cover Inventory

The forest cover inventory is a key component to the timber supply review of the TSA. The history of the current forest cover inventory in the Mid Coast TSA can be summarized briefly as follows:

- The inventory data was originally prepared in 1988-1990 from 1977-79 photography and is currently in a Vegetation Resources Inventory (VRI) Forest Inventory Planning (FIP) Rollover format. There are several mapsheets of full VRI format data in the NE corner of the TSA (portion of Tweedsmuir Park).
- A single flat file was obtained from Forest Analysis and Inventory Branch (James Wang) that included only Rank 1 stand information. Attributes were projected to January 1, 2008 using VDYP 6.
- Disturbances from harvesting and fire will be updated in the GIS resultant to March 2008 using data compiled from licensees and RESULTS. Fires from 2001-2007 were provided by the MFR FAIB.
- An inventory audit was carried out in 1994 (published 1995) and indicated that the inventory was statistically reliable for some strategic planning purposes at a broad management unit level.
- No ground sampling (Phase 2 work) has been completed to support adjustments to inventory attributes so no adjustments have been applied.
- Site index adjustments have been developed for regenerating managed stands (Timberline's 2008 SIA project<sup>3</sup>) and were used to develop managed stand yield curves. Existing inventory site indices were used for natural (unmanaged) stand yield curves.

It should be noted that planners and practitioners using the forest inventory at a sub-unit or polygon level have found the attributes quite unreliable. The extra demands of EBM (e.g. Site Series Surrogate status reporting) emphasizes the need for more dependable information. To that end a multi year, multi million dollar project to create a new VRI inventory to replace the current forest cover information was initiated in 2008 but will not be completed in time for inclusion in this analysis. In lieu of access to any better forest information the FIP-based data is employed in this TSR.

## 3.3 Management Practices

Management practice assumptions can be grouped into three broad categories: Integrated Resource Management, Silviculture, and Harvesting.

#### 3.3.1 Integrated Resource Management

Forest cover requirements are applied within the timber supply model to address timber and non-timber resource objectives that are present on the THLB. These requirements maintain appropriate levels of specific forest types needed to satisfy the objectives for wildlife habitat, biological diversity, etc. Forest cover requirements are used by the model to limit harvesting within the THLB. If the issue was addressed through spatial landbase removals (netdowns), it is shown in Table 1 above (grizzly, mountain goat, recreation, fish habitat etc). These constraints and removals are applied to address habitat requirements and prevent species decline.

The type of objectives modeled and the size of the land base affected by each objective are summarized in Figure 12 and Table 2. The specific forest cover requirements modeled for each objective are provided in Appendix 3 – Section 8.0.

May 10, 2010

AA AFORSITE

<sup>&</sup>lt;sup>3</sup> Site Index Adjustment of the Mid Coast Timber Supply Area (Project # BC0108405), January 2009, Timberline Natural Resource Consultants, Victoria, BC.

<sup>&</sup>lt;sup>4</sup> Central Coast LRMP Area Vegetation Resources Inventory Strategic Inventory Plan, February 2008, page 7.

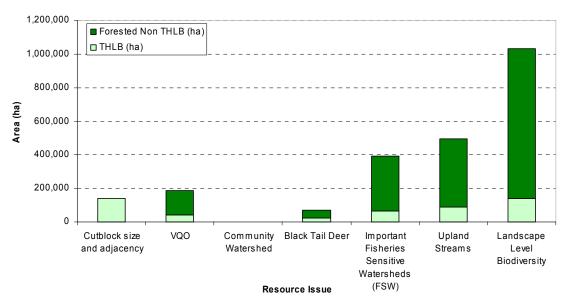



Figure 12. Areas by land base type where forest cover constraints were applied (Spatial THLB)

A summary of the areas over which various non-timber resource values occur is provided in Table 2. These areas cannot be summed to determine the total area affected because some overlapping occurs.

Table 2. Areas by land base type where forest cover constraints were applied

| Integrated<br>Resources Value                              | PFLB<br>Area<br>(ha) | Forested<br>Non THLB<br>(ha) | % of<br>Non –<br>THLB | THLB<br>(ha) | % of<br>THLB | Description                                                                                                                                                                            |
|------------------------------------------------------------|----------------------|------------------------------|-----------------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cutblock size and adjacency                                | 140,622              | 0                            | 0 %                   | 140,622*     | 100 %        | Max 25% of THLB in each LU can be < 3m tall                                                                                                                                            |
| VQO                                                        | 187,520              | 145,886                      | 16 %                  | 41,634       | 30 %         | Preservation and Retention areas addressed with Dispersed Retention harvesting. Partial Retention and Modification addressed by limiting the amount of young forest present over time. |
| Community<br>Watershed                                     | 2,163                | 1,868                        | 0.2%                  | 295          | 0.2%         | Harvesting limited to 1% of the forested area per year.                                                                                                                                |
| Black Tail Deer                                            | 67,890               | 46,067                       | 5 %                   | 21,823       | 16 %         | Min of 25% of the forested areas in a unit must be >141 yrs. (exceptions allowed in first 80 yrs)                                                                                      |
| Important<br>Fisheries<br>Sensitive<br>Watersheds<br>(FSW) | 390,737              | 323,601                      | 36 %                  | 67,136       | 48 %         | Maximum equivalent clearcut area of 20% of the forested areas allowed in each watershed.                                                                                               |
| Upland Streams                                             | 495,469              | 406,386                      | 46 %                  | 89,083       | 63 %         | Upland stream areas in specific watersheds limited to a maximum of 30%<9m tall (i.e. hydrologically recovered)                                                                         |
| Landscape Level<br>Biodiversity                            | 1,030,923            | 890,300                      | 100 %                 | 140,622*     | 100 %        | Defines the amount of old and mid seral forest that must be retained in each site series surrogate (SSS) combination                                                                   |

13

AFORSITE

<sup>\*</sup> THLB in this table includes non reverted TL's areas

### 3.3.2 Silviculture

Historical and current silvicultural practices in the TSA have been included in the model. These include:

- Two silvicultural systems: Clearcut with reserves is the dominant system while dispersed retention is planned for use in highly constrained visual areas. Historical use of dispersed retention was also modeled and is described in Appendix 3 – Section 5.1
- 2. Regeneration assumptions such as establishment method, species distribution, and establishment density, described in Appendix 3 Section 5.2
- 3. Regeneration delay (time between harvesting and when the site becomes stocked with crop trees), described in Appendix 3 Section 5.3 and
- 4. Use of select seed, described in Appendix 3 Section 5.4.

#### 3.3.3 Timber Harvesting

Assumptions around timber harvesting practices have also been included in the model and include:

- Minimum harvest ages that ensure a viable log is produced and long term volume production is not compromised (Appendix 3 Section 6.1).
- Minimum economic criteria for log size and stand volumes (Appendix 3 Section 6.1).
- Physical and economic operability (unstable slopes, inoperable areas, low sites, high cost areas, etc.). These assumptions are outlined in detail in Appendix 3 Section 3.0.
- Harvest partitions for outer coast, heli harvest, and low-poor productivity hembal stands (SI<17). Limits
  were placed on outer coast harvest (20%) and low-poor hemlock balsam harvest (19%) in each 10 year
  period to ensure the harvest volumes coming from each of these stratums were operationally realistic
  (see Appendix 3 Section 6.3). The harvest volume from helicopter harvest stands was monitored but
  not constrained.</li>

## 3.4 Forest Dynamics

Forest dynamics refers to the changing state of the forest through time. Changes occur as the forest ages, or when natural or human caused disturbances occur. The way in which the model addresses these issues is described below.

#### 3.4.1 Growth and Yield

Timber growth and yield refers to the prediction of the growth and development of forest stands over time, and of particular interest, the volume and size of trees that would occur at the time of harvest. For modeling purposes, stands of similar characteristics, growth rates, and management are grouped together into Analysis Units (AU's). Analysis Units are described in Appendix 3 – Section 4.0.

Each analysis unit is associated with its own yield curve, which is a prediction of the net volume per hectare at various stand ages. Minimum harvest ages are determined by comparing the yield curves to merchantability criteria, such as the minimum volume per hectare, minimum stand diameter or within minimum percentage of the culmination age that must be reached before the stand will be eligible for harvest. The minimum age is selected based on the maximum age of these three criteria (i.e. a stand has to meet all the criteria before being eligible for harvest).

Two growth and yield models were used to derive the yield curves used in the Mid Coast TSA analysis. The Variable Density Yield Prediction (BatchVDYP 6.6d) model, supported by the Forest Analysis and Inventory Branch, was used for estimating timber volumes for all existing natural stands. The Table Interpolation Program for Stand Yields (BatchTIPSY 4.1c - Feb 8, 2007), developed by the Research Branch was used to estimate timber volumes for both existing and future managed stands. Existing managed stands are those that are currently under 25 years of age (established after 1983) for Fd, Hw and Ba stands and under 19 years of age (established after 1989) for Cw/Yc stands. Future managed stands are stands that will regenerate after they are harvested by the model during the planning horizon.

Based on timber volume estimates, the *effective* growing stock on the timber harvesting land base is approximately 49 million cubic meters. The natural growing stock (48.8 million m³) differs from the 54 million cubic meters originally shown in the data package because of a) the modelling approach –polygon level versus block level– and b) because of the non spatial netdowns, were not originally reflected and c) because this volume does <u>not</u> include TL volume. Approximately 92% of the total growing stock (45 million m³) is currently merchantable (i.e. in stands older than their minimum harvest age). The following figure (Figure 13) shows the total –natural and managed– gross inventory volume by species.

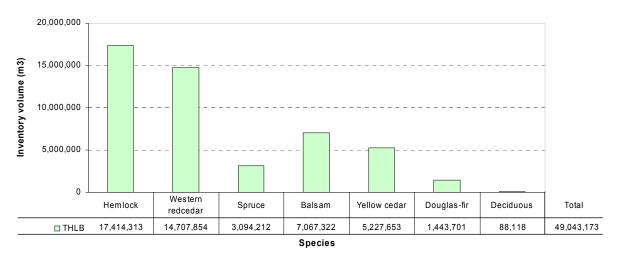



Figure 13. Total gross inventory by species in the spatial THLB

#### 3.4.2 Disturbances

#### Natural disturbances inside the timber harvesting land base:

Each year timber volume is damaged or killed on the THLB and not salvaged or accounted for by other factors. These losses are due to a number of disturbances that cause tree mortality, including insects, disease, blowdown, and wildfires. The non-recoverable loss rates from previous timber supply review (TSR2) were used for this analysis but were factored down to reflect the smaller THLB area. The annual non-recoverable losses applied in this analysis were 4,971 m³/yr for fire and 9,100 m³/yr for windthrow (total of 14,071m³/yr). No additional impacts from insects were considered for this analysis (see Appendix 3 – Section 7.1 for more detail).

Unsalvaged loss estimates address only the loss of merchantable volume from mature stands. The losses associated with damage to immature stands also impacts the rate at which timber becomes available in the THLB but little data is available to estimate the extent or impact of these losses. These disturbances are not explicitly modeled, but may be captured in OAF1 estimates, or else will be captured during periodic inventory updates and therefore reflected in subsequent timber supply analyses.

## Natural disturbances outside the timber harvesting land base:

Because stands outside of the THLB contribute toward several forest cover objectives (e.g. landscape level biodiversity), it is important that the age class distributions in these stands are also modeled in a manner that is consistent with natural processes. By simulating natural disturbance in these stands, a more natural age class distribution can be maintained in the model and a realistic contribution toward seral goals ensured.

An area of 1,361 ha is disturbed each year in the analysis to prevent age classes in the non-THLB from becoming unrealistically old during modeling (Appendix 3 – Section 7.2). Disturbance rates were based on the Range of Natural Variation (RONV) research that is incorporated into the EBM orders (2009). This was necessary to keep the rate of natural disturbance consistent with the old seral retention goals imposed by the EBM orders. Using old seral goals based on RONV studies while implementing disturbance regimes from the Natural Disturbance Types defined in the Biodiversity Guidebook would have made it impossible to meet the old seral objectives on the landbase in the long term – even if no harvesting was occurring.

A portion of the TSA (i.e. Tweedsmuir Park) used the traditional Natural Disturbance Types defined in the Biodiversity Guidebook (1995) to identify disturbance intervals because no RONV information was available. The bulk of the disturbance modeled occurred in these ecosystems even though they represent only ~25% of the TSA because the NDT disturbance rates are significantly higher than the RONV. For example, the RONV data indicates that the CWH vh 2/1 (21% of the TSA) has an effective rotation age of almost 8,000 years (1/8000 of the area disturbed each year). Full details can be found in Appendix 3- section 7.2.

## 3.5 Timber Supply Analysis Methods

Patchworks<sup>TM</sup> modeling software was used to complete the timber supply analysis. Patchworks<sup>TM</sup> is a fully spatial forest estate model that can incorporate real world operational considerations into a strategic planning framework. It utilizes a goal seeking approach and an optimization heuristic to schedule activities across time and space in order to find a solution that best balances the targets/goals defined by the user. The end resulted is a block treatment schedule that can guide operational implementation. Targets can be applied to any aspect of the problem formulation. For example, the solution can be influenced by issues such as mature/old forest retention levels, adjacency factors, visual quality objectives, green-up conditions, total harvest volume, non conventional harvest volume, growing stock levels, ECA's, specific mill volumes by species, road building/hauling costs, net present values, etc. Patchworks<sup>TM</sup> continually generates alternative solutions until a stable solution has been found based on specific performance parameters determined by the modeller. Solutions with attributes that fall outside of specified ranges (do not satisfy the targets) are penalized and the goal seeking algorithm works to minimize these penalties – resulting in a solution that reflects the user objectives and priorities. Weightings on targets are used to define target priorities and to normalize units (targets on percentages over targets on volume). High priority targets (hard constraints) are either met immediately or as soon as possible given the initial conditions and they would probably have a higher relative weighting. Usually the minimum harvest volume has a lower relative weighting because it is a target to be achieved after all the other targets (or most of them) have been met.

The purpose of this analysis is to examine both the short and long term timber harvesting opportunities in the TSA, in light of current forest management practices. Modeling assists the timber supply analyst in assessing the harvest flows associated with various scenarios. Management scenarios are groups of assumptions that define the extent of the timber harvesting land base, timber volumes, and the management regimes. The main scenario in this report is the **base case**, or current management scenario. All the sensitivity analysis was done based on this base case. Modeling was completed for a minimum of 300 years (10-year periods) for each scenario to confirm that the harvest and growing stock levels remain stable.

The results of the analysis are an important part of the annual allowable cut determination process and aim to document future harvest flows that will not restrict future options in the TSA. The results presented here do not define a new AAC – they are intended only to provide insight into the likely future timber supply of Mid Coast TSA. The final harvest level decision will be made by the Chief Forester and published along with his rationale in an AAC Determination document.

## 3.6 Major Changes from Previous Timber Supply Review (TSR2)

Changes have occurred in both the input data and management assumptions since the last timber supply analysis (TSR2 – Revised Operability Landbase). The major changes or differences from the last analysis are:

### Land Base Definition changes:

- Parks and Conservancy areas: New Conservancies, and Biodiversity, Mining and Tourism Areas have been established. Approximately 48% of the TSA's forested area is now in protected areas where commercial timber harvesting is not permitted (20% correspond to the new park and conservancy areas established since 2004).
- Operability map: A new operable area was defined using stand level economic assessments and Patchworks modeling (2008/2009).

- Community Forests: Two new community forest tenures exist and are no longer part of the TSA.
- Low Productivity Sites: Low productivity site netdowns now use lower thresholds (vol/ha and site index).
- Exclusion of WHA's. Wildlife Habitat Areas (WHAs) for grizzly bear have been established since TSR2 and were excluded from the timber harvesting land base.
- <u>First Nations</u>: Culturally Modified Trees (CMT's) are now addressed as part of the First Nations EBM objectives.
- <u>Mountain Goat Winter Range</u>: A GAR order has established mountain goat habitat areas (GAR-#U-5-004) which exclude harvesting over 90% of the area identified.
- Recreation: Recreation netdowns are based on a new inventory and limited to areas outside of the most constraining VQO polygons (Preservation (P), Retention (R), Partial Retention (PR)). This lead to a significantly larger netdown than was considered appropriate in the TSR2 rationale (3466 ha vs 692 ha in TSR2).
- <u>Riparian</u>: Based on typical licensee FSP commitments riparian reserve areas around lakes, wetlands, and streams in the Mid Coast TSA were excluded from the timber harvesting land base.
- <u>EBM considerations</u>: EBM considerations from the North and South Central Coast Orders resulted in exclusions for High Value Fish Habitat (HVFH), Aquatic Non High Value Fish Habitat, Active Fluvial Units (Floodplains), CMT's/Cultural Cw/ Monumental Cw, Grizzly Bear Habitat, Stand Level Retention / Forested Swamps, and Red and Blue List Species.
- Roads, trails and landings: A smaller proportion was discounted for roads, trails and landings compared to the TSR2. A reduction of 7 or 7.8% for existing and future roads depending on the respective stand age class was applied for the TSR2.

The TSR3's short term effective THLB area of 123,162 ha is smaller than the TSR2 'preferred reference' forecast THLB (190,425 ha) by **35.3**%. The majority of this difference comes from the introduction of new parks / protected areas (-), a new operable land base (+), and the introduction of EBM and wildlife requirements (-).

## Other Differences include:

- <u>Updated Inventory</u>: The inventory was updated for growth and depletions to January 2008.
- <u>Growth and yield adjustments</u>: Different assumptions were used for this TSR that led into higher volume estimates compared to TSR2. These differences are for example: the improved site index estimates for Cw and Hw stands, a lower minimum utilization level of 12.5 cm (compared to 17.5 cm in the TSR2), and the genetic gains associated with the use of class A seed.
- <u>Important Fisheries Watersheds</u>: Disturbance limits exist in Important Fisheries Watersheds (EBM Objective 8).
- Equivalent Clearcut Areas (ECA): ECA requirements applied in portions of certain watersheds to manage Upland Streams (EBM Objective 12).
- <u>Landscape Level Biodiversity</u>: Old seral retention requirement are now based on RONV research and are typically higher than what was used in TSR2. They were also modeled at a finer spatial resolution on the land base (LU-site series surrogate (SSS) combinations instead of LU-BEC variant combinations). Also, the amount of mid seral forest was limited to 50% within LU-SSS combinations.
- <u>Black Tailed Deer</u>: A new GAR order for black tailed deer exists and requires 20-25% of the habitat in each LU to be >141 yrs old at any time. TSR 2 required 25% > 250 yrs old.
- <u>Dispersed Retention in VQO areas</u>: Dispersed Retention harvesting is modeled in Preservation (P) and Retention (R) VQO areas and no forest cover disturbance constraints are applied in these areas.
   Dispersed Retention harvesting is also applied in 10% of the Partial Retention VQO areas, along with forest cover disturbance constraints.
- Existing dispersed retention blocks: Existing dispersed retention blocks were modeled by assigning them to a separate analysis unit with reduced volume yields (AU 315).
- Harvest level controls: Limits and were placed on the amount of Outer Coast harvest (<20%) and Low-poor hembal harvest (<19%) in each 10 year period to ensure operationally realistic harvest schedules were produced. No controls were implemented in the TSR2 published base case runs although the final</li>

- reference forecast used in the determination limited heli stand contribution and outer coast contribution to (178,000 m³/yr and 59,000 m³/yr respectively).
- <u>Disturbance of the non-THLB</u>: TSR2 did not model disturbance on the non-THLB. TSR3 implemented a natural disturbance regime that impacts 1361 ha of the forested non THLB each year (~0.15% per year). The low rates of disturbance were based on the RONV research integrated into the EBM orders.
- Use of Patchworks<sup>TM</sup>: The Patchworks<sup>TM</sup> modeling software was used for timber supply modeling.

## 4.0 Base Case Analysis

The base case scenario presented in this report is based on the best information currently available and reflects current management practices in the TSA. The current allowable annual cut (AAC) for Mid Coast TSA is 768,000 m³/yr. This AAC already reflects the establishment of the Central Coast Designated Areas (parks and protected areas). Non-recoverable losses (NRL) in the THLB are estimated to be 14,071 m³/yr and have, except where noted, been subtracted from the graphs, tables, and harvest forecasts in this report. The reported harvest flows are also net of the 1,500 m³/yr associated with EBM Objective 3, so 15,571 m³/yr were subtracted from all modelled harvest flows.

## 4.1 Alternative Harvest Flow Scenarios

Numerous alternative harvest forecasts are possible for a given set of modeling assumptions. These alternative flows represent tradeoffs between short, mid, and long term harvest level objectives. Figure 14 shows three potential harvest flows for the Mid Coast TSA base case, as well as the current AAC level.

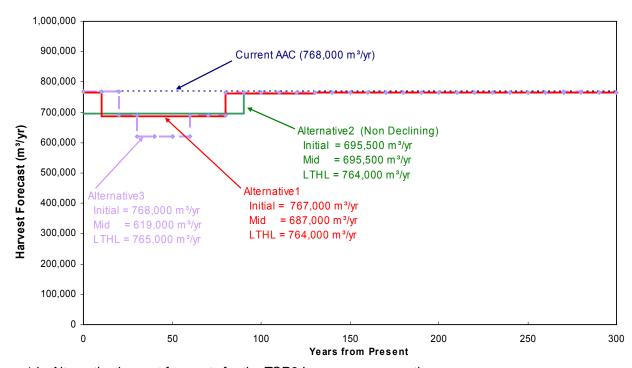



Figure 14. Alternative harvest forecasts for the TSR3 base case assumptions

Alternative 1 shows an initial harvest level of 767,000 m³/yr (1000 m³ less than the current AAC) for one decade before declining 10% to 687,000 m³/yr during the mid term, and then increasing by 10% after 70 years to a long term harvest level of 764,000 m³/yr.

Alternative 2 shows a non-declining flow that maintains an initial harvest level of 695,500 m³/yr for 90 years before climbing to a long term level of 764,000 m³/yr. Relative to alternative 1, the rise to the long term is postponed by one decade.

Alternative 3 shows an initial harvest level of 767,000 m³/yr (1000 m³ less than the current AAC) for two decades before declining to a low of 619,000 m³/yr during the mid term (two 10% drops). The mid term trough lasts for three decades before climbing to a long term harvest level of 765,000 m³/yr by the ninth decade.

## 4.2 Selected Base Case Harvest Flow

Alternative 1 in Figure 14 was selected as the preferred base case flow for the Mid Coast TSA (Figure 15). It was preferred over alternative 2 because dropping immediately to a non declining flow regime provides very little improvement in the mid term and yet forgoes harvest volume in both periods one and nine. Alternative 1 was preferred over Alternative 3 because maintaining the current AAC for 20 years results in a more significant falldown in the mid term.

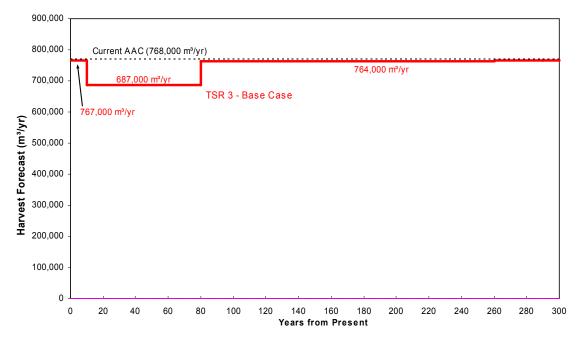



Figure 15. Base case harvest forecast for the Mid Coast TSA relative to the current AAC

The harvest and forest level attributes presented in the section below correspond with this base case harvest forecast. The sensitivity analyses that follow are all compared to this base case harvest forecast.

## 4.3 Base Case Attributes

In order to understand and evaluate the base case harvest forecast, this section describes the stands being harvested and the state of the forest over time. Numerous forest management assumptions have been modeled in the base case, many of which impact the condition of the forest through time. Using the information presented in this section, it is possible to validate these assumptions and review their impact on the overall composition of the forest.

#### 4.3.1 Growing Stock

The total and merchantable volume on the Timber Harvesting Land Base (THLB) throughout the 300 year planning horizon is shown in Figure 16. The total growing stock is the net volume of all stands based on

minimum tree diameters (i.e. trees >17.5 cm dbh for natural stands and trees >12.5 cm dbh for managed stands). The merchantable growing stock is the subset of the total growing stock that is in stands that are older than their minimum harvest ages. Typically, a flat growing stock on the THLB in the long term is desirable because it signals that the rate of harvest is more or less equal to the rate of forest growth.

The total volume currently on the timber harvesting landbase is nearly 50 million cubic meters (Figure 16). More than 45.1 million cubic meters (92%) is currently merchantable. By comparison, the TSR2 base case showed a total growing stock of around 88 million cubic meters with an almost equal volume classified as merchantable (87 million m³). These values are difficult to compare because of the 9 years of harvest / growth that has occurred between them, and also because a new land base definition is now in place which is 34.6% smaller.

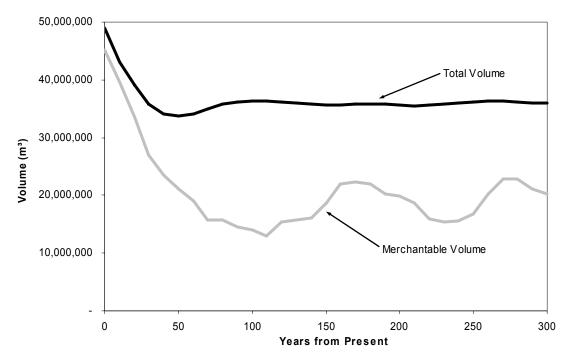



Figure 16. Merchantable and total growing stock on the THLB for the base case harvest flow

Both the total growing stock and the merchantable volume show a steady drop during the first 50 years of the planning horizon as the THLB age class structure is normalized and old high volume stands are replaced with younger thrifty stands. As the managed stands begin to produce volume in merchantable diameter classes, total growing stock begins to rise and stabilizes at around 35.9 million m³ for the long term. The merchantable volume averages ~18 million m³ in the long term.

### 4.3.2 Harvest Attributes

Figure 17. Natural vs managed stand harvest profile for the base case

shows the transition from harvesting natural stands in the short term to harvesting managed stands (2<sup>nd</sup> and 3<sup>rd</sup> growth) sixty years into the planning horizon. The first significant amount of managed stand volume is harvested in years 40-60. By years 70-80, over half of the harvest is coming from managed stands and by year 110 the harvest is coming almost entirely from managed stands. This transition point in the TSA's harvest forecast is critical in defining short term timber supply because the current stock of natural stand volume must be rationed until managed stands come online.

By year 90, managed stands dominate the harvest forecast and allow an increase in harvest level. This occurs because the managed stands are producing volume faster than natural stands as a result of

improved site index estimates for Cw and Hw stands, better site occupancy (fewer gaps), and genetic gains associated with the use of class A seed.

The long term harvest flow of 763,000 m³/yr is below the LRSY calculated for the future managed stands (~929,000 m³/yr). This is an expected result because the landbase is subject to a set of constraints that prevents the harvest of some stands and reduces the rate of harvest for other stands.

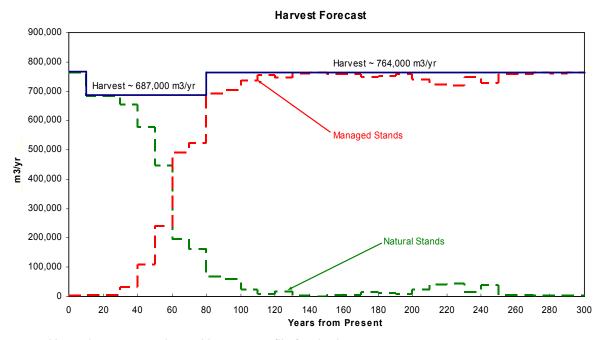



Figure 17. Natural vs managed stand harvest profile for the base case

Figure 18 shows the harvest species profile over the planning horizon and indicates that western red cedar and hemlock/balsam tree species make up the majority of the harvest, while Douglas-fir and spruce make up the remainder. Cedar and hemlock are the most common species in the THLB but spruce is a common secondary species. Spruce harvest is significantly lower after 100 years because the modeled regeneration assumptions rarely contain spruce as a secondary species.

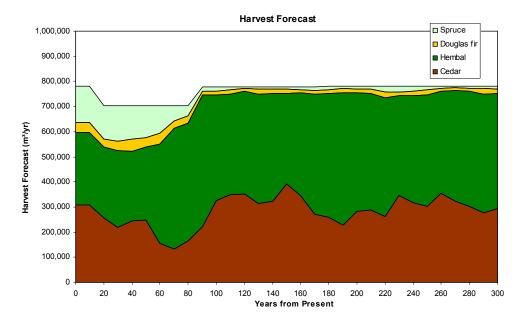


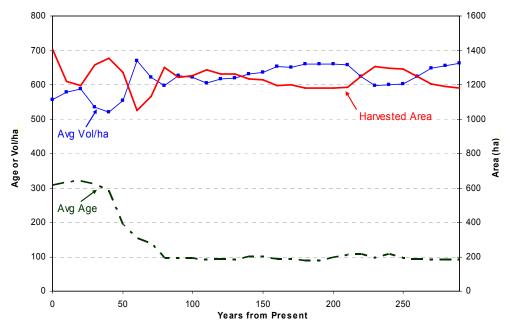

Figure 18. Base case harvest flow by tree species volumes

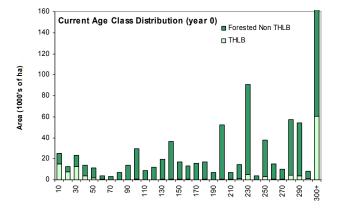
It should be noted that during the transition to managed stands in years 60-80, an increase in hemlock/balsam harvest occurs while the cedar harvest drops. This occur because much of the early second growth is hemlock leading. This time frame is probably the most complex in terms of achieving the timber supply requirements because natural stands suitable for harvest are becoming scarce and managed stands are just coming online in a significant way.

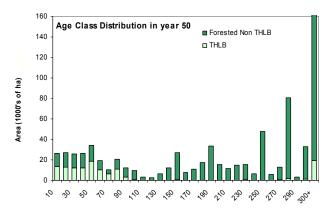
Figure 19 below shows the average area harvested per year, the average harvest age, and the average harvest volume/ha over time. The area harvested over time is typically between 1,200 ha and 1,400 ha with an average of 1,237 ha/yr across the planning horizon. In periods 4 and 5, the harvest area is increasing as the volume per ha is dropping so that an even volume flow is provided during the mid term. Immediately after these periods, the situation reverses as higher volume managed stands come on line and the area required for harvest become less.

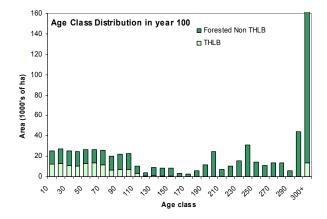
During the beginning of the planning horizon, harvest ages are over 300 years (natural stands) and yield approximately 550  $\text{m}^3$ /ha, while in the longer term, managed stands are typically harvested at around 100 years of age and yield 630  $\text{m}^3$ /ha.

It should also be noted that the period where the largest amount of area is harvested (with lowest vol/ha) immediately precedes the transition to managed stands (i.e. 40-50 years in the future). This period will be challenging for the TSA because options for harvest will be very constrained (assuming full harvest of the AAC up until then).





Figure 19. Average harvest age, area, and vol/ha for the base case


## 4.3.3 Age Class Distribution


Figure 20 provides age class distributions for the TSA showing both the THLB and non-THLB land bases in four snapshots (years 0, 50, 100, and 200). For the non THLB, the present day stand ages are highly concentrated in older ages - the majority older than 200 years. On the other hand, the THLB tends to be skewed toward younger and older ages, and there is a distinct lack of THLB area the middle age classes. This behaviour is typical for land bases that are under a conversion process from a natural old growth forest to a commercially managed forest.

The figures also demonstrate the natural disturbance succession being modeled in the non-THLB. On average 1,361 ha were disturbed each year and this area continues to show up in the younger age classes as the modeling time frame progresses. A large area of age class 300+ exists at 200 yrs because the natural disturbance rate on this land base are very low and stands reach very old ages.

The 200 yr graph shows a 'regulated' forest structure where stands in the THLB are relatively evenly distributed in age classes between 0-130 years as this is the typical harvest age. The 200 yr graph also shows that some of the THLB remains as old-growth to satisfy old forest requirements.







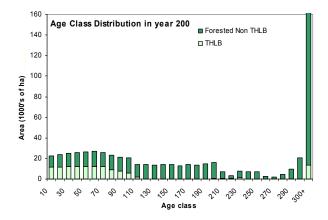



Figure 20. Age class distributions at year 0, 50, 100, and 200 for the base case forecast

## 4.4 Constraints Analysis

#### 4.4.1 Harvest Profiles

The base case assumptions limited the volume contribution from the outer coast and low site index (SI<17m) old growth hemlock/balsam stands in each period to a level consistent with expected future performance. This was defined as 20% of the harvest for outer coast and 19% for low site index old hemlock/balsam stands (these profiles can and do overlap). Once harvested, poor-low hemlock stands move to managed stand site index and get associated with higher volumes and thus do not belong to the poor-low hemlock profile anymore.

Two other profiles were tracked for reporting purposes. These were the proportion of volume harvested by helicopter and the volume harvested from specific basins in the Owikeno watershed. Specific portions of the Owikeno area were identified by MFR as a concern for short term operability (next 40 years - due to access costs for currently merchantable stands) or for perpetual operability concerns (whole planning horizon). The Owikeno area is a productive area, and the areas modelled for short term deferral are expected to contribute to the harvesting land base once existing second growth stands become merchantable, which is projected to be in about 40 years.

Figure 21 shows the actual harvest profiles achieved in the base case and the associated targets for outer coast and low site index hembal partitions. It can be seen that low site index hembal stands are being limited to their maximum contribution during the first eight decades of the planning horizon when older natural stands are being harvested. After this initial period they drop to an irrelevant level as managed stands dominate the forecast. These low site hembal stands initially make up 17% of the THLB area and 25% of the existing natural stand volume.

Harvest from the outer coast never reaches the maximum allowable 20% but does get close (18%) in periods 4 and 5. Across the planning horizon, outer coast harvest averages 13% of total harvest volume. Outer coast stands make up 19% of the THLB area and 22% of the initial volume on the THLB.

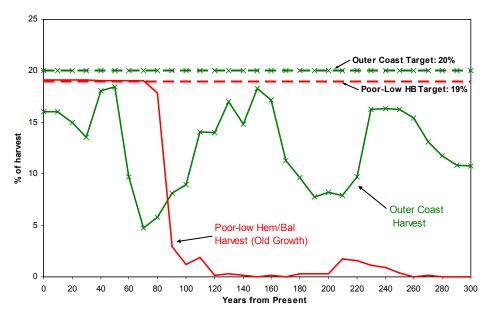



Figure 21. Harvest volume contributions from outer coast and poor-low hemlock/balsam partitions

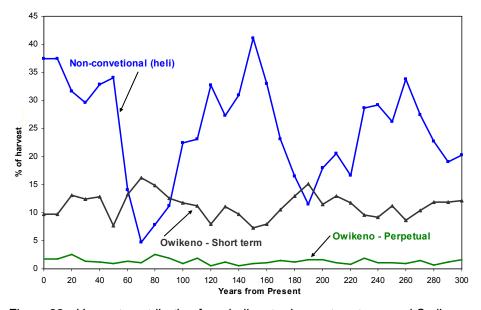



Figure 22. Harvest contribution from helicopter harvest systems and Owikeno watershed areas

Figure 22 shows helicopter harvest fluctuating during the forecast horizon - ranging from 5% to 41% of the harvest volume. It is initially at the high end of the range and then drops sharply during years 50 to 70 as harvest is focused into the first second growth stands that come online in the inner coast (which are conventional harvest). This is also coincident with the drop in cedar harvest presented in Figure 18 because these same early 2<sup>nd</sup> growth stands are heavy to hemlock regeneration. Helicopter harvest area makes up 30% of the THLB and 34% of the initial volume. It has very little overlap with the low-poor hembal THLB area.

Specific portions of the Owikeno area were identified by MFR as a concern for short term operability (next 40 years) due to the access costs for the currently merchantable stands, or due to potential perpetual operability concerns (whole planning horizon)<sup>5</sup>. The Owikeno area is a productive area, and the areas

25



<sup>&</sup>lt;sup>5</sup> Information provided by the North Island – Central Coast (NICC) Forest District.

modelled for short term deferral are expected to contribute to the harvesting land base once existing second growth stands become merchantable, which is projected to be in about 40 years. The short term operability area concern contributes 10-13% of the harvest volume in the first forty years. The potential perpetual operability area contributes only 2-3% of the harvest volume over time. The short term operability areas make up 9% (12,781 ha) of the THLB while the potential perpetual operability areas make up 1% (1,390 ha) of the THLB.

## 4.4.2 Landscape-level Biodiversity for Old and Mid Seral

A minimum amount of old forest must be maintained within each Landscape Unit (LU) / Site Series Surrogate (SSS) combination in the TSA, while the amount of mid seral must be kept below a maximum target. Figure 23 shows a rolled up result for all of the spatial units (LU/SSS combinations) in the TSA over the planning horizon, indicating the amount of old and mid seral area relative to the required amount (target). In general terms, the minimum old seral constraints and the mid seral constraints appear to never be constraining. Old seral forest exists on ~72% of the PFLB for most periods when only 39% is required by the EBM objectives. Mid seral forests occur on ~8% of the PFLB for most periods when they are allowed to be as high as 50%. These general statistics are only for reference purposes as the targets must be met on individual LU/SSS unit areas.

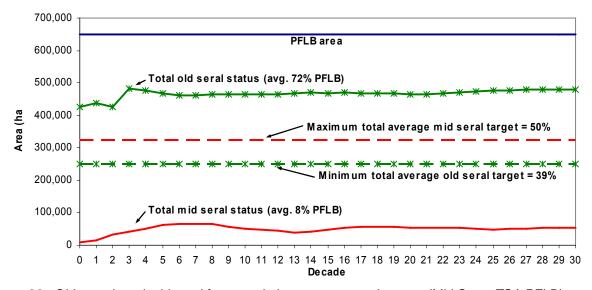



Figure 23. Old growth and mid seral forests relative to aggregated targets (Mid Coast TSA PFLB)

At the LU/SSS level, these constraints prove to be limiting in several situations (Figure 24). As a result of the old seral goals, almost 20% of the THLB is actively constrained across the entire planning horizon (Figure 24). This does not mean that the full 20% of the THLB is unavailable for harvest but that a portion of this area is unavailable because it must be retained to meet old seral objectives.

The mid seral target becomes constraining between years 20 and 80 for up to 6% of the THLB.

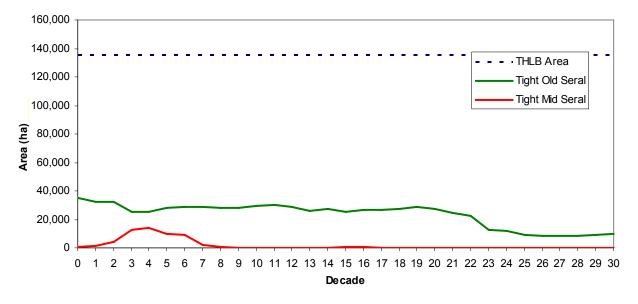



Figure 24. THLB area with tight constraints (actively limiting harvest) from old and mid seral limits

## 4.4.3 Black Tailed Deer Winter Range

The black tailed deer winter range had three different requirements for three different set of LU's. These three different requirements were:

- a) a minimum of 25% of the PFLB older than 140 years over the whole planning horizon,
- b) a minimum of 20% of the PFLB older than 140 years for the first four decades, then consistent with (a) for the rest of the planning horizon, and
- c) a minimum of 20% of the PFLB older than 120 years for the first four decades, then consistent with (a) for the rest of the planning horizon.

Figure 25 presents the status of the aggregated minimum mature forest cover requirements for black tailed deer. This aggregation of all spatial units suggests requirements are easily satisfied over time and, in this case, a similar trend is seen in the individual Landscape Units. Because of overlapping objectives such as old seral, the requirement to meet 25% mature forest does not appear to limit harvesting in the model. A Landscape Unit example is shown below for Machmell LU.

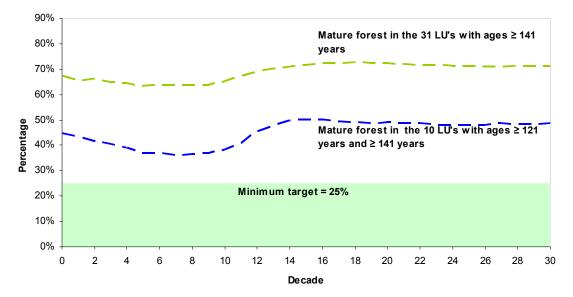



Figure 25. Aggregated forest cover requirements for black tailed deer winter range

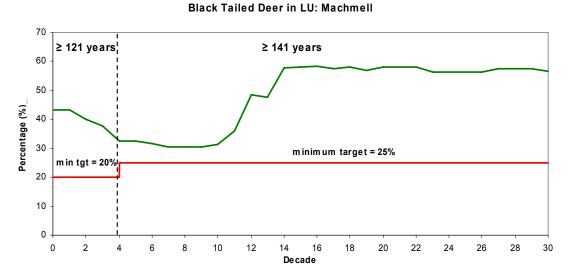



Figure 26. Forest cover requirements for black tailed deer in the Machmell LU

## 4.4.4 Upland stream

Upland streams were implemented as a maximum disturbance constraint on the upland portion of specific watersheds in order to provide for the maintenance of hydrological and ecological processes. Figure 27 provides an overall summary of the total area under upland stream constraints and the effective area with stands less than 9 m tall. In general terms, this graphs shows a non restricted condition (<30% under 9 m) but since this constraints was applied at a watershed level, individual performance will vary for each specific area.

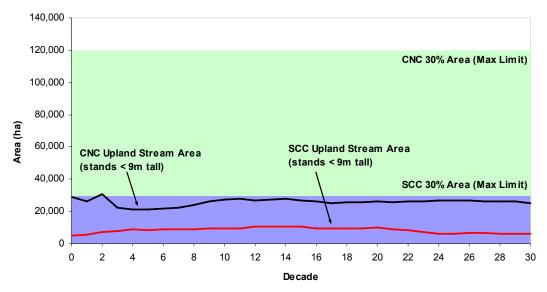



Figure 27. Total upland stream area and area with stands < 9 m tall by Ministerial Order

Figure 28a provides a case where the watershed begins the planning horizon exceeding the maximum requirements for stands under 9m tall, but then as stands grow, a large drop in the proportion of stands under 9m occurs. Once below the maximum, the model does not allow it to exceed 30% again. Figure 28b shows a case where the constraints never became a limiting factor and shows fluctuations around 10% for stands less than 9 m tall.



Figure 28. LU level examples of upland stream conditions relative to maximum limits

## 4.4.5 Visually Sensitive Areas

Visually sensitive area were also seen to be actively limiting harvest in most harvest periods. Several of the hundreds of modeled VQO polygons were at or near their target disturbance limits throughout the planning horizon. The extent of the impact of the VQO constraints would be best understood through sensitivity analysis but limited resources prevented this sensitivity from being run.

## 5.0 Base Case Differences from TSR2

The 'reference forecast' described in the TSR2 AAC rationale document<sup>6</sup> is presented here as the TSR2 harvest forecast. It used the 'revised operability' landbase (THLB= 190,425 ha) but placed limits on the amount of volume that could come from outer coast (59,000 m³/yr) and helicopter harvest (178,000 m³/yr) stands. Without these controls, the harvest forecast was significantly more robust. A decade has been removed from the front end of the documented TSR2 flow because ~9 yrs have past since it was created.

Relative to the TSR2 flow presented below, the TSR3 base case shows a significantly reduced short term harvest but a slightly higher long term harvest forecast. This section summarizes and explains, where possible, the differences between the harvest flows. More details on the different inputs and assumptions included in the two analyses can be found in Section 3.6.

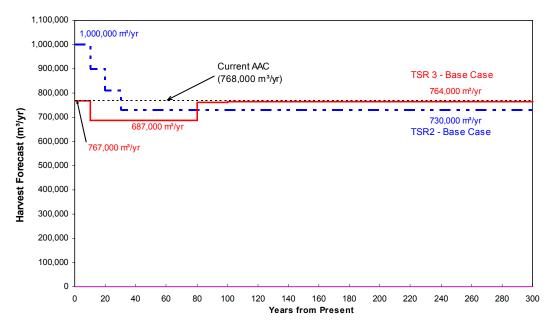



Figure 29. Mid Coast TSA TSR2 and TSR3 base case harvest projections

#### Downward pressures on TSR3 base case timber supply relative to TSR2

- 34% smaller THLB area (new parks and protected areas, new community forests, EBM objectives (FN's, grizzly, riparian, red/blue, FN values, red/blue listed species, etc). TSR2 THLB was 190,425 ha (preferred reference scenario).
- Ecosystem Based Management (EBM) forest cover requirements specifically the old seral requirements and the mid seral limits reduced available timber in a number of periods.
- Introduction of wildlife habitat cover constraints (Ungulate Winter Range GAR orders, etc.)
- Modeling of dispersed retention silviculture systems (replaced forest cover constrains in P and R VQO's).
- Natural disturbances implemented in the non THLB.

http://www.for.gov.bc.ca/hts/tsa/tsa19/tsr2/rationale.pdf (top of page 13)

## Upward pressures on TSR3 base case timber supply relative to TSR2

- THLB reductions discussed above were partially offset by an expansion of the operable area (based on
  economic operability assessment), reduced thresholds to define low sites, refined approach to recreation
  netdowns).
- Site index adjustment (SIA) completed for managed Cw and Hw leading stands. Overall, the weighted average inventory site index on the THLB increases by 5 m, from 17.1 m to 22.5 m, when SIA are used for Cw and Hw leading stands.
- Harvest partitions were altered:
  - Outer coast harvest was limited to 20% of annual harvest volume instead of 5.9% (59,000/998,000).
  - Heli harvest was not limited here but 'non-conventional inoperable' stands were limited to 178,000 m<sup>3</sup>/yr in TSR2. The helicopter landbase used here is not the same area as the non-conventional landbase they were determined using very different approaches.
  - Low site hemlock limit was kept almost the same (limited to 19% here vs 20% in TSR2).
- Use of improved seed and associated genetic gains increased future managed stand volumes (4.2% for western redcedar and 0.4% for Douglas-fir).

#### Unknown influence on timber supply relative to MP3

- Use of spatial stream data to do riparian netdowns.
- Updating of regeneration species mixes and densities.

There are other differences between the TSR3 and TSR2 analyses as listed in Section 3.6 but their impact on timber supply is unclear or very small.

## 6.0 Base Case Sensitivity Analyses

The data and assumptions used in timber supply analysis are often subject to uncertainty. To provide perspective on the impacts of changes to data or assumptions, sensitivity analyses are commonly performed. Usually only one variable (data or assumption) from the information used in the base case is changed in order to explore the sensitivity of that variable. Sensitivity analysis is a key component of any timber supply analysis process as it permits the determinant (the Chief Forester) to gauge the potential impact of uncertainty around assumptions and data that make up the base case. Sensitivity analyses help to frame the potential impacts of uncertainty by analyzing scenarios that are more pessimistic and more optimistic than the base case.

Table 3 provides a list of the sensitivity analyses completed on the TSR3 base case.

Table 3. TSR3 sensitivity analyses completed on the current practice base case

| Sensitivity analysis                                                 | Analysis Element Change                                                                                | Description of the Changes in Sensitivity Run                                                                                                                                           |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Size of THLB (larger)                                                | Timber Harvesting Land Base                                                                            | The THLB is increased by 14.9% (+18,957 ha) based on a reduced revenue (stumpage) assumption in the economic operability project (increase operable area with marginal stands).         |
| Size of THLB (smaller)                                               | Timber Harvesting Land Base                                                                            | The THLB is decreased by 14.3% (-18,246 ha) based on an increased revenue (stumpage) assumption in the economic operability project (decrease operable area – exclude marginal stands). |
| Size of THLB (existing logged areas all included)                    | Timber Harvesting Land Base                                                                            | The THLB is increased by 5.6% (+7,153 ha) based on the inclusion of previously logged stands excluded by the operability definition (increase operable area – all young).               |
| Natural Stand Yields plus 10%                                        | Natural stands                                                                                         | The volume associated with natural stands is increased by 10%.                                                                                                                          |
| Natural Stand Yields minus 10%                                       | Natural stands                                                                                         | The volume associated with natural stands is decreased by 10%.                                                                                                                          |
| VDYP6 vs VDYP7                                                       | Natural stands                                                                                         | Compares growing stock estimates for natural stands using both VDYP6 and VDYP7.                                                                                                         |
| Future dispersed retention modelled at 20% (instead of 10%)          | Stands where dispersed retention is expected to occur in future (All R and P VQOs and 10% of PR VQO's) | Total retention is assumed to remain at 30% but be modeled as 10% aggregate and 20% dispersed (instead of 20% aggregate and 10% dispersed as in base case).                             |
| Minimum Harvest Ages<br>(MHA) plus 10                                | All stands                                                                                             | Minimum harvest ages are increased by 10 years.                                                                                                                                         |
| Minimum Harvest Ages (MHA) minus 10                                  | All stands                                                                                             | Minimum harvest ages are decreased by 10 years.                                                                                                                                         |
| Manage Cw/Yc Profile                                                 | Timber Harvesting Land Base                                                                            | Ensure a minimum volume of 30% from western red cedar and yellow-cedar leading stands.                                                                                                  |
| Drop Grizzly EBM requirements                                        | Timber Harvesting Land Base                                                                            | Put the grizzly EBM netdown areas back into the THLB when no other netdown is present.                                                                                                  |
| EBM risk managed old seral targets                                   | Targets for old seral stands                                                                           | Replace the default EBM old seral targets with the risk managed target values.                                                                                                          |
| Partition: Limit outer coast harvest to 10%                          | Harvest partitions.                                                                                    | Reduce the amount of harvest allowed from the outer coast from 20% to 10% per decade.                                                                                                   |
| Partition: Limit the harvest in the Owikeno watershed                | Harvest partitions                                                                                     | Exclude harvest from the short term concern areas for the first 4 decades and from the perpetual concern areas for the whole planning horizon.                                          |
| Pre EBM with no changes in Parks                                     | THLB + Constraints                                                                                     | The long term THLB is increased by 10% (+12,745 ha) when the EBM netdown (7,772 ha) are added back to the THLB and the non spatial netdown are dropped from 9% to 5.1%.                 |
| Pre EBM + 2004 version<br>of Parks (Tweedsmuir,<br>Hakai, Fiordland) | THLB + Constraints                                                                                     | The long term THLB is increased by 47% (+59,886 ha) when the 2004 Parks and EBM netdown are added back to the THLB and the non spatial netdown are dropped from 9% to 5.1%.             |

All the sensitivity scenarios present results based on a short, mid and long term perspective (or Initial, Mid and LTHL in the figures, respectively). For this analysis, the initial period generally refers to the first decade, the mid term generally referring to decade 2 to 8, and the long term generally referring to decade 10 and beyond.

All the sensitivity analyses were modelled with the goal of producing a similar harvest flow pattern to the base case harvest flow. This was done to make it easier to compare the impacts of the change relative to the base case while avoiding confusion created by subjective harvest flow decisions.

## 6.1 Size of Timber Harvesting Land Base

Several factors that determine of the size of the THLB have uncertainty around their definitions (operable area, problem types, low sites, riparian management, impacts from trails and landings, etc). Different market conditions in the future or changes in harvesting or milling technology can also serve to reduce or expand the land base considered to be economical.

It is not known if the THLB used in this analysis is over or under-estimated, so two sensitivity runs have been completed. These runs were based on a change in the operability criteria which resulted in an increase and decrease of the size of the THLB by 14.9% and 14.3%, respectively.

## **Methodology**

| Run                                   | How was it Analyzed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. Timber harvesting land base +14.9% | An alternative (larger) operable area was used in the landbase netdown. This operable area was developed using a lower average stumpage target in the economic operability assessment <sup>7</sup> - which would have allowed more marginal stands to be included in the operable area. The new netdown resulted in a THLB that was larger by 14.9%. This was modeled by proportionally adjusting block areas using AU specific adjustments. AU specific adjustments were used because they were better able to reflect the types of stands now being included in the THLB. The size of each non-THLB block was reduced by an offsetting proportion that kept the total PFLB area the same. |
| b. Timber harvesting land base -14.3% | An alternative (smaller) operable area was used in the landbase netdown. This operable area was developed using a higher average stumpage target in the economic operability assessment - which would have pushed the most marginal stands out of the operable area. The new netdown resulted in a THLB that was smaller by 14.3%. Implementation was the same as described in (a) above.                                                                                                                                                                                                                                                                                                   |
| c. Timber harvesting land base +5.6%  | The netdown was redone with any previously logged areas that were originally classified as inoperable added into the operable landbase. This new netdown increased the THLB by 5.6%. The area of logged blocks in the THLB was increased proportionately in order to focus the additional area in young age classes. An offsetting reduction was applied to the logged area of the non THLB to keep the total PFLB area the same. This essentially shifted an area of young stands from the nonTHLB to the THLB.                                                                                                                                                                            |

Results are shown in the graph and table below.

33



http://www.forsite.ca/MidcoastTSR3/files/MC\_EconOperability\_Report\_March31-09.pdf (Forsite 2009).

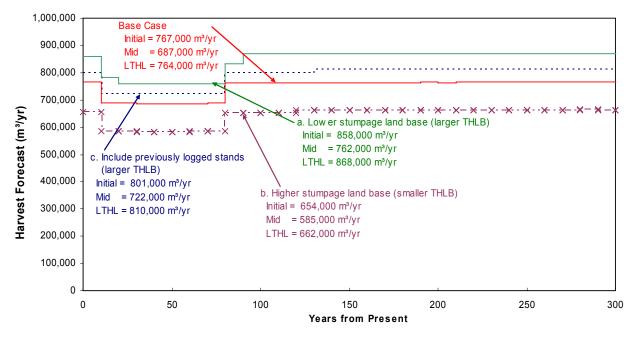



Figure 30. Alternative Timber Harvesting Land Base harvest forecasts

## **Results**

| Run             | Initial                 | Mid Term                     | Long Term                    |
|-----------------|-------------------------|------------------------------|------------------------------|
| a. Timber       | Increase in the initial | Average increase in the mid  | Average increase in the long |
| Harvesting Land | harvest level of 12% to | term harvest level of 11% to | term harvest level of 14% to |
| Base +14.9%     | 858,000 m³/yr           | 762,000 m³/yr                | 868,000 m³/yr                |
| b. Timber       | Decrease in the initial | Average decrease in the mid  | Average decrease in the      |
| Harvesting Land | harvest level of 15% to | term harvest level of 15% to | long term harvest level of   |
| Base -14.3%     | 654,000 m³/yr           | 585,000 m³/yr                | 13% to 662,000 m³/yr         |
| c. Timber       | Increase in the initial | Average increase in the mid  | Average increase in the long |
| Harvesting Land | harvest level of 4% to  | term harvest level of 5% to  | term harvest level of 6% to  |
| Base +5.6%      | 801,000 m³/yr           | 722,000 m³/yr                | 810,000 m³/yr                |

A percentage increase or decrease in the THLB typically has a roughly proportional impact on the harvest flow and the results illustrate this. However, increases in the THLB tend to have a slightly lower proportional increase in the harvest flow and decreases in the THLB tend to have a slightly higher proportional decrease in the harvest flow.

For the scenarios that changed THLB areas by adding/removing marginally economic timber, the disproportionate shifts are partly explained by the types of stands being added/removed. When the least economic stands are removed (THLB shrinks), the average productivity of the remaining stands tends to increase, while the opposite is true when marginal stands are added in (THLB increases).

When only young stands are added to the THLB (previously logged areas), impacts are seen less in the short term and more in the mid and longer term because this is when the extra area is able to contribute to the harvest schedule.

## 6.2 Natural Stand Yields

Stand yields are a critical input into timber supply analysis. The short and mid term timber supply is heavily influenced by the availability of timber in natural stands that make up the current growing stock. The current

standing and mature timber provide the timber harvesting opportunities before managed stands come online for harvest.

Figure 17. Natural vs managed stand harvest profile for the base case

indicates that the harvest of natural stands diminishes extremely quickly after the 6<sup>th</sup> decade, at which time managed stands start to become more important to the timber harvest profile.

Uncertainty in timber yields can result from many different factors. Natural stand yields are based on the VDYP yield model, which predicts yields from stand attributes in forest inventory maps. Inaccuracies in the model, in decay estimates, or stand attributes can create uncertainties around actual stand yields.

## Methodology

| Run                               | How was it Analyzed?                                                                                |
|-----------------------------------|-----------------------------------------------------------------------------------------------------|
| a. Natural Stand Yields plus 10%  | The yields associated with each natural stand analysis unit were increased by 10% (100 series AU's) |
| b. Natural Stand Yields minus 10% | The yields associated with each natural stand analysis unit were decreased by 10% (100 series AU's) |

Results are shown in the graph and table below.

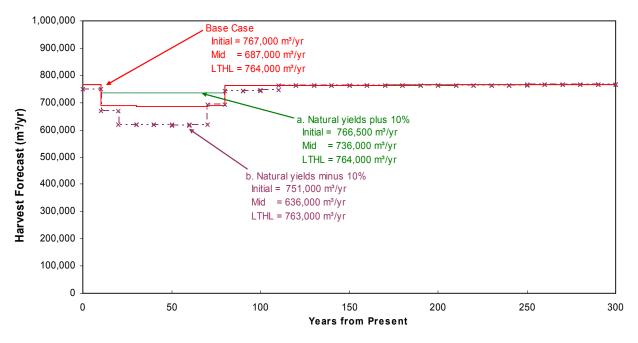



Figure 31. Alternative natural stand yield harvest forecasts

#### Results

| Run              | Initial                       | Mid Term                    | Long Term                     |
|------------------|-------------------------------|-----------------------------|-------------------------------|
| a. Natural Stand | Minor decrease in the initial | Average increase in the mid | No change by staying at       |
| Yields plus 10%  | harvest level of 0.1% to      | term harvest level of 7% to | 764,000 m³/yr                 |
|                  | 766,500 m³/yr                 | 736,000 m³/yr               |                               |
| b. Natural Stand | Decrease in the initial       | Average decrease in the mid | Minor decrease in the long    |
| Yields minus     | harvest level of 2% to        | term harvest level of 7% to | term harvest level of 0.1% to |
| 10%              | 751,000 m³/yr                 | 636,000 m³/yr               | 763,000 m³/yr                 |

Natural stands are the main source of volume during the first 6 decades and thus a decrease or increase in their yields has an immediate impact on short and mid term harvest flow. When more volume is present, it can

be metered out faster while waiting for managed stands to come online. When less volume is present, it must be metered out more slowing. These scenarios have no change in the long term.

A 10% increase in the natural stand yields has no impact on the initial harvest level but it has a 7% increase in the harvest level for the next 7 decades (years 11 to 80 from present). This occurs because additional volume is available only on the portion of the harvest profile coming from natural stands. A larger increase in harvest could have been implemented in the initial period with a subsequent lower gain in the mid term but the objective was to mimic the flow regime from the base case. Thus, the resulting harvest flow significantly decreases the drop of the mid term period by bringing it up almost to an even flow type.

A 10% decrease in natural yields results in a 2% drop in the initial period and a 7% drop in the mid term relative to the base case (Figure 31).

## 6.3 Use of VDYP7 to Estimate Natural Stand Yields

The Forest Inventory and Analysis Branch of the MFR recently adopted the VDYP7 yield prediction model as the standard tool for estimating volumes for stands in the provinces inventory files. The analysis described in this report was completed using the older (VDYP6 model) to predict natural stand yields because VDYP7 was not yet ready when yield curve development occurred. Because the VDYP7 model is now the official version, a sensitivity was designed to explore the differences that would have resulted from using VDYP7.

### How was it Analyzed?

This sensitivity did not involve timber supply modeling but is rather a comparison of the initial growing stock in the TSA's THLB, when projected using VDYP6 vs VDYP7. The following describes how this comparison was made:

- A lookup table was created so that feature id's from the VDYP7 inventory file could be linked with the VDYP6 inventory file using GIS (97%+ of the polygons were identical – only the VRIMS updated polygons were different).
- The forest cover with the VDYP6 volume projections was projected forward by 1 year using VDYP6 batch v.6.6d so that the projection year for each Forest Cover was the same (2008).
- Comparisons were only made where there was a one to one relationship between the inventory files and polygons had identical ages and areas.
- The projected age from the resultant (VDYP6 forest Cover) that had depletions reflected was used to limit the volumes being compared to stands >60 years old. This ensured the areas being compared were the same and that depletions applied against the resultant (VDYP6) were reflected in the VDYP7 volumes.
- A total of 102,848 ha over 60 years old was able to be compared. This is approximately 75% of the THLB area but represents >97% of the area >60 yrs old.

## Results

Using VDYP 7 as the growth and yield model for natural stands in this TSR analysis would have resulted in approximately 5.5% more natural stand volume on the THLB (Table 4). The VDYP 7 model suggests that there is an additional 3.2 million m³ of standing inventory currently on the THLB. This volume can be distributed over the short and mid term decades and would have allowed a higher short term harvest level and/or a higher mid term trough. Based on the harvest flow selected for the 'Natural stand yields +10%' sensitivity presented above (section 6.2) we would expect the midterm trough to be reduced by ~24,500 m³/yr (or a higher initial harvest flow could be achieved).

Table 4. Comparison of VDYP6 and VDYP7 inventory volumes for THLB stands >60 yrs old

| Forest Inventory Projection Tool | Area<br>(ha) | Volume<br>(m³) | % Change       |
|----------------------------------|--------------|----------------|----------------|
| VDYP6                            | 102,848      | 58,842,921     | -5.2% of VDYP7 |
| VDYP7                            | 102,848      | 62,072,569     | +5.5% of VDYP6 |

This occurred because VDYP7's regression equations produce different (more accurate) estimates of volume. This is due partly to updated site index curves from new research projects, the use of basal area instead of crown closure, and the use of BEC based (ecological) factors to predict taper and loss factors instead of forest inventory zones (FIZ).

Table 5 shows the approximate percent difference of VDYP 7 volumes relative to VDYP 6 volumes by species. In general balsam, cedar, and hemlock volumes are larger using VDYP7, while other species volumes are smaller.

Table 5. Comparison of VDYP6 and VDYP7 inventory (THLB >60 yrs old) by leading species

| Leading Species<br>Group | Percent difference relative to VDYP6 |  |
|--------------------------|--------------------------------------|--|
| Balsam                   | 1.1%                                 |  |
| Cedar                    | 8.6%                                 |  |
| Douglas-fir              | -5.3%                                |  |
| Hemlock                  | 6.2%                                 |  |
| Other                    | -4.6%                                |  |
| Spruce                   | -11.7%                               |  |

## 6.4 Future Dispersed Retention

When dispersed retention or scattered trees are retained in harvest units, they can have a significant impact on initial harvest yields and growth rates of regenerating stems underneath the retention. Base case modeling of this practice assumes a total retention of 30% in areas where dispersed retention is expected to be used (highly constrained visual areas). This is assumed to consist of 10% dispersed retention while the remainder is in patches/groups or along the block edge. This sensitivity is designed to test the impact of increasing the amount of dispersed retention to 20% while the other 10% remains in patches and along block edges.

#### Methodology

Run

How was it Analyzed?

Increased dispersed retention in highly constrained visual areas.

The 7,185 ha of THLB that had DR applied in the base case had dispersed retention increased from 10% to 20% (spatially retained in model). This is incremental to the 4.4% retention applied to all THLB stands for stand level retention. Thus, first harvest entries into these DR stands had 24.4% of their area retained from harvest.

The regenerating yields on these stands were modeled in TIPSY in the same manner as the base case but assuming 20% dispersed retention instead of 10%. This provided a percentage impact factor to be applied to the standard yield curves. This resulted in yield curves that were 22% to 41% lower, and this was in addition to the growing site losses discussed in the paragraph above.

The net result of the 10% additional DR was an additional volume loss of ~15-20% on the 7,185 ha of THLB with DR modeled.

Results are shown in the graph and table below.

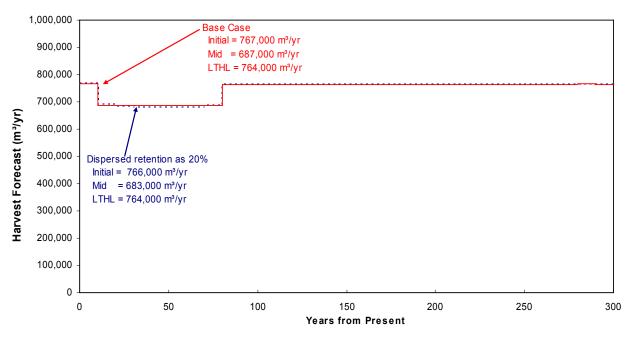



Figure 32. Harvest forecast using increased dispersed retention in highly constrained visual areas

#### Results

| Run                                                               | Initial                                                              | Mid Term                                                              | Long Term                                                                          |
|-------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Increased dispersed retention in highly constrained visual areas. | Minor decrease in the initial harvest level of 0.2% to 766,000 m³/yr | Average decrease in the mid term harvest level of 1% to 683,000 m³/yr | No change shown because the 1% impact is within modeling tolerance (764,500 m³/yr) |

The shifting of 10% retention from patches to dispersed retention does not have a significant impact to the harvest projection because the additional impact of 15-20% at the stand level is only applied to 7,185 ha (highly constrained visual areas -5.8% of total THLB) so the scale of the impact is quite small when viewed from the entire TSA perspective (15-20% of 5.8% = 1% impact).

## 6.5 Minimum Harvest Ages

Uncertainty around the age that stands become merchantable for harvest is linked to both our ability to predict the future growth of stands and our ability to understand future conditions that will define merchantability (markets / products). The minimum harvest age was selected based on achieving a minimum volume/ha and a minimum diameter, while ensuring for future stands a harvest level within 90% of the culmination MAI age.

The large majority of minimum harvest ages used in the base case scenario was driven by the diameter criteria (56%) followed by the MAI criteria (33%).

The use of minimum harvest ages derived considering maximum MAI's tends to optimize long term harvest levels, but allowing stands to be harvested when they are first merchantable provides flexibility in the transition from short to long term harvest levels. The transition from short to mid term harvest levels in the TSR is heavily influenced by when managed stand volumes become available in significant quantities. It is unknown if there are more appropriate minimum harvest ages than those used in the base case, so sensitivity runs have been completed to explore the impact of both higher and lower harvest ages.

## Methodology

| Run                                     | How was it Analyzed?                                         |
|-----------------------------------------|--------------------------------------------------------------|
| Min Harvest Ages<br>decreased by 10 yrs | Minimum harvest ages for each AU were decreased by 10 years. |
| Min Harvest Ages increased by 10 yrs    | Minimum harvest ages for each AU were increased by 10 years. |

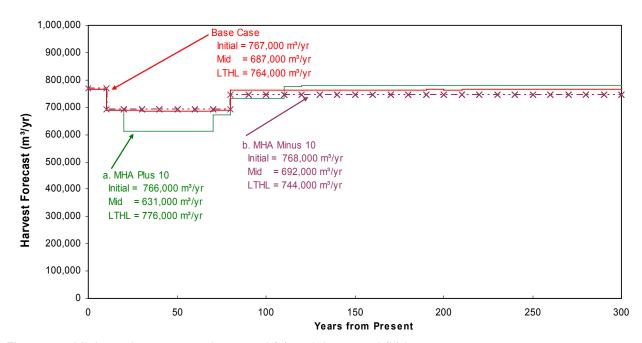



Figure 33. Minimum harvest ages increased (a) and decreased (b) by 10 years

#### Results

| Run                                        | Initial                           | Mid Term                                                              | Long Term                                                              |
|--------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| a. Min Harvest Ages increased by 10 yrs    | 1,000 m <sup>3</sup> /yr<br>lower | Average decrease in the mid term harvest level of 8% to 631,000 m³/yr | Average increase in the long term harvest level of 2% to 776,000 m³/yr |
| b. Min Harvest Ages<br>decreased by 10 yrs | 1,000 m³/yr<br>higher             | Average increase in the mid term harvest level of 1% to 692,000 m³/yr | Average decrease in the long term harvest level of 3% to 744,000 m³/yr |

Figure 33 shows that decreasing harvest ages by 10 years has a minor impact on the harvest flow. There are small gains in the short and midterm because of increased harvest flexibility, while long term flows are slightly worse off as typical harvest ages are getting further away from culmination ages. The increased access to younger stands in the mid term does not lead to an improvement in harvest flow because these stands would have to be harvested with lower volume/ha – offsetting any gains from having these stands available.

A significant decrease (-8%) in mid term harvest flow occurs as a result of increasing minimum harvest ages by 10 years. Figure 33 shows that a 10 year delay in when managed stands become available has a direct impact on the mid term. However, these longer rotations result in harvesting occurring closer to culmination age in the long term and an increase in the long term flow (+2%).

The timing of the transition from natural to managed stands is a critical point in this harvest forecast. Any delay in managed stands coming online has the potential to significantly impact the harvest flow.

## 6.6 Manage Cedar Harvest Profile

A harvest profile that is too dependant on one species or another in a specific period of the planning horizon can indicate an unachievable or undesirable solution. This sensitivity has been designed to explore the timber supply implications of maintaining a minimum harvest volume of cedar logs in each period. This scenario was setup to require at least 30% of the harvest to come from cedar leading stands in each period. Cedar leading stands was used as a surrogate for cedar volume because it was not practical to model/manage cedar volume from all stand types.

## **Methodology**

| Run                  | How was it Analyzed?                                                                                                                                     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manage cedar profile | Ensure harvest from cedar leading AU's makes up at least 30% of the total harvest in each period. This is a surrogate for managing actual cedar harvest. |

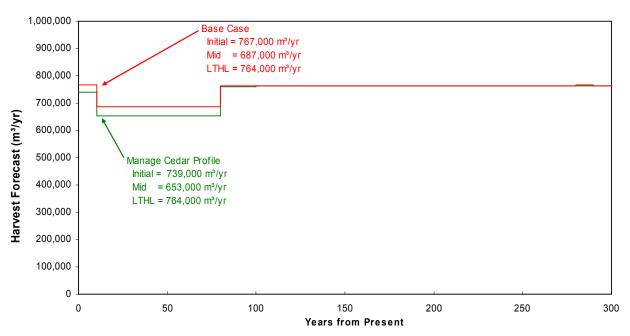



Figure 34. Manage cedar profile to a minimum of 30% of the periodic harvest level

## **Results**

| Run                  | Initial                                                              | Mid Term                                                                       | Long Term  |
|----------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|------------|
| Manage cedar profile | A decrease in the initial period of 4% to 739,000 m <sup>3</sup> /yr | Average decrease in<br>the mid term harvest<br>level of 5% to<br>653,000 m³/yr | No change. |

The 30% minimum requirement for cedar leading stands can be met but at the expense of harvest flow in the short and mid term. This occurs because the managed stands that come online first are dominantly hembal leading stands and there is little else to harvest during this transition time. Thus, the model has to move cedar volume from earlier periods to cover the gap in this period.

Harvest availability in the MidCoast TSA is defined in part by past harvest activity. Figure 9 illustrates that there is a significant amount of Hemlock-Balsam that does not currently meet minimum harvest age criteria, nearly double that of the cedar-cypress group. Meanwhile there is an abundance of cedar-cypress that does meet minimum harvest age criteria now, while hemlock-balsam group is significantly less. This situation is an

artefact of past harvest history. This cycle can only be expected to cycle throughout the planning horizon as the model is not preferential to a particular species or revenue objective in the base case.

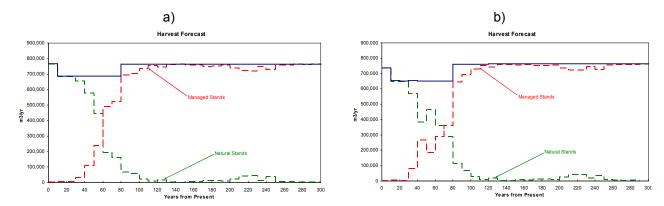



Figure 35. Transition of natural stands to managed stands: base case vs manage cedar profile

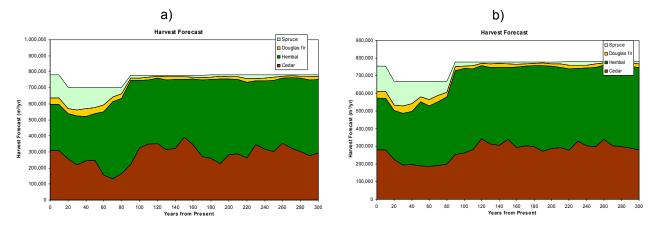



Figure 36. Harvest flow estimation by species: base case vs manage cedar profile

Figure 35 shows an important shift in the transition of natural to managed stands in this sensitivity run (b) compared to the base case transition (a). More volume is coming from the first cohort of managed stands earlier in the harvest schedule so that they can be mixed with cedar volume in existing natural stands. This reduces the sudden shift to managed stands in years 60-80, with its high proportion of hemlock, and provides a more even harvest of cedar volumes.

The consequence of doing this is that managed stands are now being harvested at a lower age with lower volumes, which reduces the harvest flow. Figure 36 shows the smoothening of the cedar leading stand harvest profile between years 60 and 90 relative to the base case. There is evidence that most of the volume is redistributed from neighbouring periods in order to fill up the gap.

## 6.7 Drop Grizzly EBM Requirements

Grizzly bears are a highly important regional species on the South Central Coast and Central and North Coast. The EBM orders spatially identify grizzly bear habitat and require that it be maintained as functional habitat (Objective 17). This sensitivity analysis aims to quantify the impact of these grizzly reserves on the forested landbase.

## Methodology

| Run                           | How was it Analyzed?                                                                                                                                                     |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drop Grizzly EBM requirements | Drop EBM grizzly habitat netdown. Since it was the last netdown applied, it was possible to simply add these areas (2,662 ha) back into the THLB (~2% increase in THLB). |

## **Results**

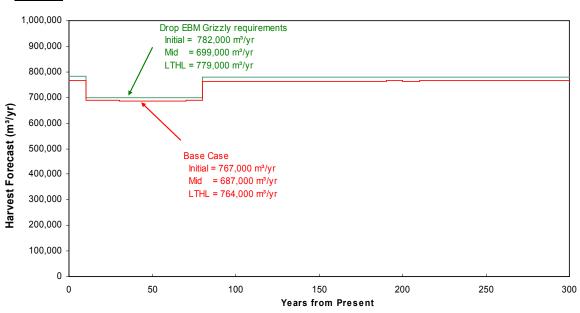



Figure 37. Impact of allowing harvesting in a portion of the mapped EBM Grizzly habitat

| Run              | Initial                 | Mid Term                            | Long Term               |
|------------------|-------------------------|-------------------------------------|-------------------------|
| Drop Grizzly EBM | Increase of the initial | Average increase of the             | Average increase in the |
| requirements     | harvest level of 2% to  | mid term harvest level              | long term harvest level |
|                  | 782,000 m³/yr           | of 2% to 699,000 m <sup>3</sup> /yr | of 2% to 779,000 m³/yr  |

Figure 37 shows a proportional increase in the harvest flow (+2%) relative to the increase in the THLB area (+2%). It should be noted that the vast majority of the mapped EBM grizzly bear habitat remained out of the THLB because of overlaps with other netdowns.

## 6.8 'Risk Managed' Old Seral Requirements

The CNC and SCC orders define old forest as a stand of trees 250 years or older, and then requires that a specific amount of old forest is retained within each landscape unit and Site Series Surrogate (SSS)<sup>8</sup>. The details of this can be found in Schedules 4, 4b, 4c, 4d (SCC) and 4, 4b, 4c (CNC) of the EBM orders. For simplicity, the default targets for old seral retention were used in the base case for all units. This sensitivity analysis explores the harvest flow impacts of the other extreme where Risk-Managed targets are adopted for all old seral retention units. These targets reduce the percentage of old growth that must be maintained in specific landscape units in the TSA once a specified list of activities has been completed ensuring that, for example, the habitat requirements for focal species have been addressed.

42

A FORSITE

\_

May 10, 2010

<sup>&</sup>lt;sup>8</sup> Site Series Surrogate (SSS) are groupings of stand types within BEC variants. There are 13 potential stand groupings that can occur within each BEC variant that are a function of leading species and site index. For example, Stand type#1 = Fd leading with SI > 27.

## Methodology

| Run                                      | How was it Analyzed?                                                                                                                                                                                                                                                                                                          |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBM 'Risk- Managed'<br>Old Seral Targets | Old seral requirements were modeled using forest cover constraints or objectives (e.g. min 20% > 250 yrs) in each LU/SSS combination. This sensitivity changed the target requirements (%'s) for old seral to a new set of targets that have lower requirements based on Schedule 4 in the EBM orders (Risk Managed targets). |

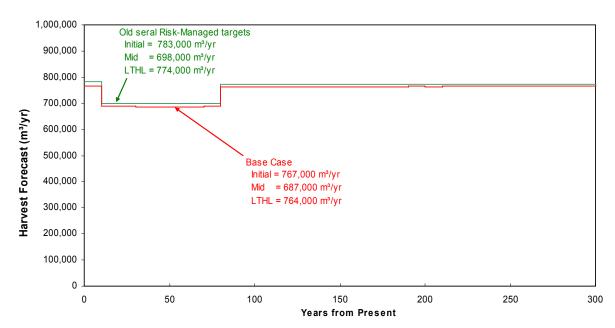
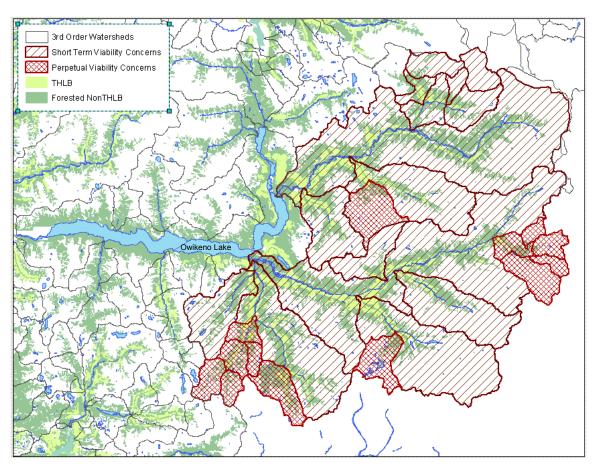



Figure 38. Harvest flow using EBM Risk-Managed targets for old seral requirements

#### Results

| Run                                      | Initial                                        | Mid Term                                       | Long Term                                          |
|------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------|
| EBM 'Risk- Managed'<br>Old Seral Targets | Increase of the initial harvest level of 2% to | Average increase of the mid term harvest level | Average increase in the long term harvest level of |
| _                                        | 783,000 m³/yr                                  | of 2% to 698,000 m <sup>3</sup> /yr            | 1% to 774,000 m³/yr                                |

Figure 38 shows that adopting the 'risk-managed' old seral targets has a slight positive impact (+2%) on the harvest flow in the short and midterm. This occurs because the reduction in old seral requirements translates into more stands being available for harvest over time.


To understand the implications of adopting the risk managed targets, the initial condition of the land base was assessed relative to both sets of targets. The results showed that the old seral requirements in the TSA drop by 28% (from 250,979 ha down to 179,913 ha) when the Risk-Managed targets are applied. This change does not translate into significant gains in timber supply because much of this area was in the non THLB and thus releasing it does not translate into increased timber harvesting opportunities. The areas that are constraining in the base case, may not have had any reduction in old seral requirement under the Risk Managed target.

## 6.9 Outer Coast and Owikeno Harvest Profiles

In order to understand the harvest flow dynamics associated with the volume contributions from the Outer Coast and specific basins in the Owikeno watershed, sensitivity analysis were completed where constraints were placed on these areas. The outer coast harvest was an issue of concern in the last TSR analysis while concerns with the economic viability of some basins in the Owikeno watershed have been raised by MFR District staff in this TSR. The THLB stands in these basins were shown to be viable in the economic operability project (Forsite 2009<sup>9</sup>). All parties agree that this is a difficult place to operate in the TSA but the licensee currently working in this area (Kvamua Enterprises - Wuikinuxv First Nation) has harvested timber there in the last two years and has more planned in the future. This sensitivity was designed to assess the impact of dropping or deferring the Owikeno areas shown in Figure 39 (THLB reductions and deferrals).

## Methodology

| Run                                                                        | How was it Analyzed?                                                                                                                                                                       |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. Limit harvest volume contribution from outer coast to 10%.              | Limit the volume contribution from the outer coast to 10% of the periodic harvest level (instead of 20%). Outer coast zone is consistent with the area identified and mapped in TSR2.      |
| b. Limit harvest volume contribution from specific Owikeno watershed areas | Prevent harvest for 4 decades from the areas suggested as having short term concerns (12,781 ha), plus completely exclude harvest from areas with suggested perpetual concerns (1,390 ha). |



44

Figure 39. Owikeno watersheds with operability concerns as identified by MFR

http://www.forsite.ca/MidcoastTSR3/files/MC\_EconOperability\_Report\_March31-09.pdf







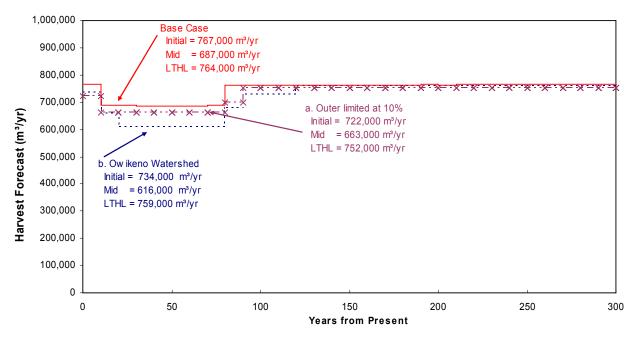



Figure 40. Harvest forecast with alternative limits on outer coast and Owikeno harvest contributions

### **Results**

| Run                                                                                 | Initial                                                      | Mid Term                                                               | Long Term                                                              |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| a. Limit harvest volume contribution from outer coast to 10%.                       | Decrease of the initial harvest level of 6% to 722,000 m³/yr | Average decrease of the mid term harvest level of 3% to 663,000 m³/yr  | Average decrease in the long term harvest level of 2% to 752,000 m³/yr |
| b. Limit harvest<br>volume contribution<br>from specific Owikeno<br>watershed areas | Decrease of the initial harvest level of 4% to 734,000 m³/yr | Average decrease of the mid term harvest level of 10% to 616,000 m³/yr | Average decrease in the long term harvest level of 1% to 759,000 m³/yr |

Reducing the allowable contribution of the outer coast to 10% results in a 6% reduction in short term harvest and 2-3% reduction in the mid and long term harvest. Figure 41 shows that limiting the outer coast to 20% in the base case does not impact the harvest forecast because the highest value achieved is only 18%. However, when the limit is reduced to 10%, it becomes limiting in the majority of periods. When a 15% limit is used, there is essentially no impact to the harvest schedule because the model is able to shift the timing of stands to satisfy the objective.

The area identified as THLB in the outer coast area has the following characteristics:

- It represents 18.9% of the total THLB,
- 75.6% of the area is cedar
- 12.9% of the area is low or poor hemlock
- All of the area was evaluated to be economic in the economic operability analysis.

Annual licensee reporting information supplied by MRF staff indicates the amount of outer coast harvest ranged between zero and 20 percent of annual harvest volume in the TSA (2000-2008), with some of the best performance occurring in the most recent years (20% in 2007 and 17.7% in 2008). Given that not all of the outer coast area is administratively available for harvest activity because it has not been made available to any license holder in the TSA, the recent performance in the Outer Coast confirms that the amount of harvesting assumed in the base case (14-18% in short term, long term avg. of 12.6%) is reasonable. The

Outer Coast is an important and economically viable component of the TSA and should be allowed to contribute proportionally to harvest over time (see historical harvest profile in Appendix 3 – section 6.3)

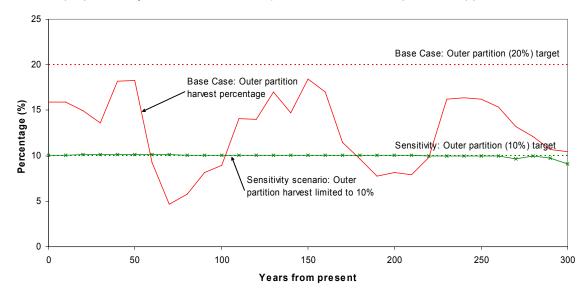



Figure 41. Harvest volume contribution over time from the outer coast when limited to 20% and 10%

When Owikeno areas are excluded or deferred from harvest, the short term harvest level falls by 4%, while the midterm is reduced by 10%, and the long term has very little change. This indicates that the amount of area lost in the long term is small but that the mature volume in the Owikeno units that are excluded/deferred is critical to short and midterm harvest flows.

Figure 42 shows that the base case harvested an average of 161 ha/period (16.1 ha/yr) from the Owikeno areas excluded in this sensitivity, while the base case harvested an average of 1,246 ha/period (124.6 ha /yr) from the deferred areas in this sensitivity analysis. Significantly more area is captured under the deferral than the exclusion. The figure shows that the deferral of volume is not completely made after yr 40 when harvest spikes upward until yr 70. The area above the line is less then the amount below the line in yrs 1-40 so constraints must be limiting the 'catchup' and resulting in midterm harvest impacts.



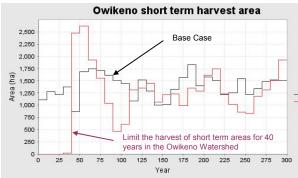



Figure 42. Harvest profile on the Owikeno deferral and exclusion areas relative to the base case

## 6.10 Pre EBM Scenarios

Two scenarios were modeled to explore the implication of EBM implementation. These two scenarios can be considered individual models more than sensitivity runs because they include numerous major changes from the base case. These scenarios aim to assess the impact of the implementation of the Ecosystem Based Management (EBM) objectives and the recently designated parks, conservancies, and protected areas.

## Methodology

| Run                                                                           | How was it Analyzed?                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. Pre EBM + 2004<br>version of parks                                         | Same changes as below plus ignore all parks except for Tweedsmuir, Hakai, and Fiordland. New landbase shown in Table 6 (48% increase in the Effective THLB).                                                                                            |
| b. Pre EBM with no changes to currently established parks and protected areas | Drop all EBM related netdowns and management objectives. New landbase shown in Table 6 (10% increase in the Effective THLB). Most EBM elements simply dropped, but some were replaced with FRPA requirements (explained in detail below netdown table). |

Table 6. Landbase netdowns for the Pre EBM scenarios

|                                                    |                 |              | Effective* Area (ha) |                            |  |
|----------------------------------------------------|-----------------|--------------|----------------------|----------------------------|--|
| Land Base Element                                  | Total Area (ha) | Base<br>Case | Pre EBM              | Pre EBM<br>+ 2004<br>Parks |  |
| Total area (Mid Coast TSA Bdy - less ocean)        | 2,994,120       | 2,994,120    | 2,994,120            | 2,994,120                  |  |
| Less:                                              |                 |              |                      |                            |  |
| Private Land, Indian Reserves                      | 14,365          | 14,365       | 14,365               | 14,365                     |  |
| TFL's, CFA's, PCFA, Misc Leases, Etc               | 263,393         | 263,393      | 263,393              | 263,393                    |  |
| Timber License's (unreverted)                      | 5,279           | 5,279        | 5,779                | 5,845                      |  |
| Total TSA Area                                     | 2,711,083       | 2,711,083    | 2,710,582            | 2,710,517                  |  |
| Non forest / Non-productive forest                 | 1,681,250       | 1,681,250    | 1,681,250            | 1,681,250                  |  |
| Non-Commercial Brush                               | 480             | 480          | 480                  | 480                        |  |
| Existing Roads, Trails and Landings                | 4,937           | 3,521        | 3,521                | 3,521                      |  |
| Total Productive Forest Land Base** (PFLB)         |                 | 1,025,831    | 1,025,331            | 1,025,265                  |  |
| Less:                                              |                 |              |                      |                            |  |
| Parks and Ecological Reserves                      | 495,133         | 495,133      | 495,133              | 286,853                    |  |
| Inoperable / Inaccessible                          | 819,219         | 327,229      | 327,229              | 420,499                    |  |
| Environmentally Sensitive Areas (ESA's)            | 261,177         | 28,977       | 28,977               | 61,252                     |  |
| Non-Merchantable or Problem Forest Types           | 196,805         | 33           | 33                   | 2,215                      |  |
| Low Productivity Sites                             | 177,662         | 17,819       | 17,819               | 44,039                     |  |
| Grizzly Wildlife Habitat Areas (WHA's)             | 13,661          | 3,755        | 3,755                | 5,187                      |  |
| Mountain Goat Winter Range                         | 29,985          | 65           | 65                   | 684                        |  |
| FRPA Riparian (all but S6's)                       | 17,433          | 6,240        | 6,240                | 6,373                      |  |
| Recreation Values                                  | 10,470          | 3,466        | 3,466                | 5,931                      |  |
| EBM - High Value Fish Habitat (Obj 9)              | 5,782           | 1,603        | 0                    | 0                          |  |
| EBM – Non High Value Aquatic Habitat (Obj 10)      | 6,630           | 2,094        | 0                    | 0                          |  |
| EBM – Active Fluvial Units (Obj13)                 | 5,693           | 1,150        | 0                    | 0                          |  |
| EBM - HVFH Kimsquit River (Obj 9)                  | 1,133           | 264          | 0                    | 0                          |  |
| EBM – Sensitive Grizzly Bear Habitat (Obj 17)      | 42,420          | 2,662        | 0                    | 0                          |  |
| Spatial Timber Harvesting Land Base (ha)           |                 | 135,343      | 142,615              | 192,233                    |  |
| Non Spatial Netdowns Applied to Each THLB Polygon: |                 |              |                      |                            |  |
| FRPA Riparian – S6's (0.3% of THLB))               |                 | 406          | 428                  | 577                        |  |
| EBM – Arch/FN (Obj 4-7: 1.3%)                      |                 | 1,759        | 2,567                | 3,460                      |  |
| EBM – Red and Blue (Obj 15: 3.0%)                  |                 | 4,060        | 0                    | 0                          |  |
| EBM – Stand Level Retention (Obj 16: 4.4%)         |                 | 5,955        | 4,278                | 5,767                      |  |
| Effective THLB (ha)                                |                 | 123,162      | 135,342              | 182,429                    |  |
| Future Reductions:                                 |                 |              |                      |                            |  |
| Future roads, trails and landings                  |                 | 2,713        | 2,713                | 2,713                      |  |
| Future Gains:                                      |                 |              |                      |                            |  |
| TL Reversions                                      |                 | 5,279        | 5,779                | 5,845                      |  |
| Long Term Timber Harvesting Land Base (ha)         | 125,728         | 138,408      | 185,561              |                            |  |

#### EBM Objectives replaced with FRPA requirements:

- The EBM objectives for Archaeological/First Nations values were replaced with FRPA requirements (1.8% used in TSR2). This is higher than the EBM netdown used in the base case (1.3%) because less overlap occurs with other netdowns once EBM removed. The EBM scenario would be providing higher levels of protection for First Nations values.
- The management of red and blue listed species under FRPA was assumed to be addressed by WHA's.
- Stand level retention requirements under FRPA addressed using a 3% netdown (was 4.4% under EBM). The 3% impact for FRPA was determined using judgement and the fact that TSR2 used LU specific targets that ranged from 1% to 4%. It is not reasonable to look at the two estimates (3% and 4.4%) and say that EBM has only a 1.4% difference because the net impact of stand level retention is heavily dependant on the spatial netdowns already occurring on the landbase. EBM has a higher stand level retention requirement but it also implements numerous additional spatial netdowns (enhanced riparian reserves, grizzly bear habitat, etc) that can act to partially fulfill the stand level retention requirement.
- Old seral requirements (replacing EBM Obj 14) were based on the Provincial Non-Spatial Old Growth Order 10 and the landscape unit BEO assignments found in LU spatial file. This resulted in lower % old growth requirements being maintained on the landbase and the targets were met within broader geographic areas (LU/BEC variant combinations). Low BEO targets were not reduced to 1/3 of target because only 5 very small units were constraining at full target levels, and they had no impact on the timber supply.

#### Inclusion of Parks

Netdowns were ignored for all parks and protected areas except for Tweedsmuir, Hakai, Fiordland. This required an operability designation to be included in the park area. The stand level economic assessment completed in the Economic Operability project (Forsite 2009) was used to define operability. Any stand within the parks that had a net value of greater than minus \$10 was considered operable. Once these stands were flagged as operable, the standard netdowns were implemented and produced the landbase shown in Table 6.

The results of the analysis are shown in the graph and table below.

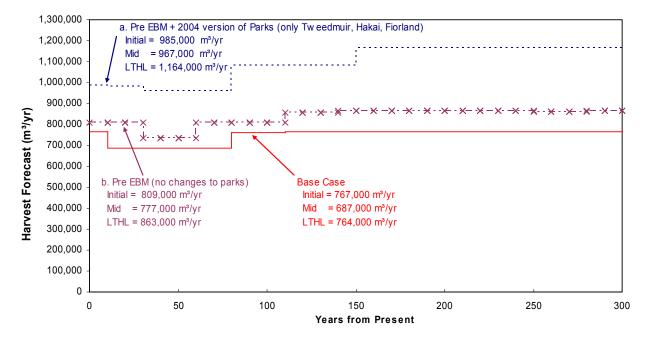



Figure 43. Pre EBM harvest forecasts

AA AFORSITE

<sup>&</sup>lt;sup>10</sup> http://ilmbwww.gov.bc.ca/slrp/lrmp/policiesguidelinesandassessements/oldgrowth/pdf/Old\_Growth\_Order\_May18th\_FINAL.pdf [accessed online: December 10, 2009]

#### Results

| Run                                                                                   | Initial                                                         | Mid Term                                                               | Long Term                                                                 |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|
| a. Pre EBM + 2004<br>version of Parks (only<br>Tweedsmuir, Hakai,<br>Fiordland parks) | Increase of the initial harvest level of 28% to 985,000 m³/yr.* | Average increase of the mid term harvest level of 41% to 967,000 m³/yr | Average increase in the long term harvest level of 52% to 1,164,000 m³/yr |
| b. Pre EBM with no changes to Parks                                                   | Increase of the initial harvest level of 5% to 809,000 m³/yr    | Average increase of the mid term harvest level of 13% to 777,000 m³/yr | Average increase in the long term harvest level of 13% to 863,000 m³/yr   |

<sup>\*</sup> Note: An alternative flow regime could have been presented where the current AAC could be maintained for 2 decade and then a slightly larger drop into the midterm trough occurred.

Both scenarios include major changes to the land base definition plus reductions in forest cover constraints, which is reflected as significant increases in harvest levels. Figure 43 shows that the Pre EBM scenario has a higher initial harvest level and a shorter mid term trough - only between years 40 and 60 from the present. Although both scenarios present an increase in harvest levels for the duration of the whole planning horizon, it is during the long term where the model has the highest response with a 13% and a 52% increase for the Pre EBM and Pre EBM+Parks, respectively. These main drivers are the increase in the THLB area, and to a lesser degree the reduced old growth seral targets, and the elimination of EBM objectives such as mid seral, sensitive fisheries watersheds, and upland streams.

Numerous harvest flows were possible with these two scenarios (tradeoffs between short/mid/long term harvest levels). The objective in scenario "a" was to start at or close to the TSR2 harvest level of 998,000 m³/yr and maintain or improve on that harvest level if possible. Meanwhile the objective in scenario "b" was to mimic the harvest flow pattern achieved in "a" for as long as possible provided that a midterm step down no greater than that in the base case was necessary.

The 'Pre EBM + 2004 version of parks' assumptions are similar to what was modeled in TSR2 and the short term harvest flow reflects this. The long term looks dramatically different than TSR2 because of the site index adjustments and select seed gains applied to managed stands in TSR3.

## 7.0 Summary and Recommendations

Given the base case inputs and assumptions, a harvest level slightly below that of the current AAC can be maintained for 10 years (767,000 m³/yr) before declining to an average of 687,000m³/yr for the next 70 years. The long term harvest level is projected to be 1% lower than the current AAC. The short term harvest level is able to remain very close to the current AAC even with the implementation of EBM because of the more accurate operable landbase which greatly improves upon identifying the harvestable area within the TSA, increased flexibility with outer coast and helicopter harvest partitions, adjusted site indices, and recognition of volume gains from select seed.

The short and mid term harvest levels in the TSR3 base case are heavily influenced by a pinch point that exists 55-65 years into the future. This is the point where natural stands are no longer dominating the harvest and managed stands are just beginning to come online in a substantial way. It should also be noted that short to mid term harvest forecast includes 19% poor-low hembal volume, 30-35% helicopter harvest volume, and 14-18% outer coast volume. Note that a single stand can fit into all three of these profiles so the percentages can overlap.

The base case flow is substantially different from TSR2 results because of changes in assumptions and data used. For example, large areas of new parks and conservancy have been established and Ecosystem Based Management objectives have been implemented. These combine to significantly reduce the short term harvest from that published in TSR2 (998,000 m³/yr). The TSR3 long term harvest flow is just above the TSR2 projection, even with a substantially reduced landbase, because of the much higher yields projected from managed stands (site index adjustments, use of select seed).

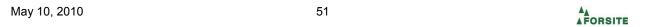
In order to assess the impacts of potential changes to modeling assumptions, and gain further understanding of the dynamics at work in the base case forecast, a series of sensitivity analyses were completed and are summarized below by the type of impact (Table 7).

Table 7. Summary of Sensitivity Analysis Results

| Run                                                       |         | % Change to Harvest Forecast |           |  |  |
|-----------------------------------------------------------|---------|------------------------------|-----------|--|--|
| Kuli                                                      | Initial | Mid term                     | Long term |  |  |
| Negative Impacts                                          |         |                              |           |  |  |
| Decreasing the THLB (higher stumpage target)              | -15%    | -15%                         | -13%      |  |  |
| Partition: Limit the harvest in the Owikeno watershed     | -4%     | -10%                         | -1%       |  |  |
| Natural stand yields minus 10%                            | -2%     | -7%                          | none      |  |  |
| Minimum harvest ages increased by 10 years                | none    | -8%                          | +2%       |  |  |
| Partition: Limit Outer Coast contribution to 10%          | -6%     | -3%                          | -2%       |  |  |
| Manage cedar profile to a minimum of 30% of harvest level | -4%     | -5%                          | none      |  |  |
| Positive Impacts                                          |         |                              |           |  |  |
| Increasing the THLB (lower stumpage target)               | +12%    | +11%                         | +14%      |  |  |
| Increasing the THLB (add in previously logged areas)      | +4%     | +5%                          | +6%       |  |  |
| Natural stand yields plus 10%                             | none    | +7%                          | none      |  |  |
| Use of VDYP to estimate natural stand yields              | ?       | +4%                          | none      |  |  |
| Drop Grizzly EBM requirements                             | +2%     | +2%                          | +2%       |  |  |
| Old seral requirements using EBM Risk- Managed targets    | +2%     | +2%                          | +1%       |  |  |
| Pre EBM with no changes in Parks                          | +5%     | +13%                         | +13%      |  |  |
| Pre EBM + 2004 version of Parks                           | +28%    | +41%                         | +52%      |  |  |
| Neutral Impacts                                           |         |                              |           |  |  |
| Future dispersed retention at 20%                         | none    | marginal                     | none      |  |  |
| Minimum Harvest Ages decreased by 10 years                | none    | +1%                          | -3%       |  |  |

Sensitivity analyses revealed that the short term harvest level is highly dependant on the amount of existing natural stand volume and on achieving merchantable managed stand volumes in a timely manner. Any factors that could delay managed stands from becoming eligible for harvest or any reduction in the amount of natural stand volume on the land base will impact short term harvest levels.

The Pre EBM scenarios revealed that the implementation of the EBM Land Use Orders alone results in a 5-13% timber supply impact in the short term (13% in the long term). When EBM is combined with the parks and conservancies that have been created since 2004, the total impact is a 28-41% timber supply impact in the short to midterm and a 52% impact in the long term.


### Recommendations:

The following are areas where improvements could be made in the next TSR:

- Complete ecosystem mapping at the site series level in order to better manage for red/blue listed species, and old seral retention (replace the site series surrogates). This mapping may also be useful to delineate active fluvial units and forested swamps. The mapping could also be used to adjust site indices for stands that are not cedar or hemlock leading.
- 2. Complete a new forest inventory that also provides an update on previously logged blocks. There are numerous logged blocks in the forest cover dataset with no data. The mature forest cover polygons are large and have attributes that often not consistent with the field.
- 3. The impacts of Cultural Heritage and First Nations EBM objectives were estimated for this analysis but would benefit from a more rigorous examination and or operational experience.
- 4. There was significant discussion around the recreation netdown implemented here (and in TSR2) with licensees stating that no netdown should occur. These issues should be studied to provide objective data on the issue.
- 5. A tracking system should be setup and maintained to understand the operational impacts of EBM issues such as red/blue, forested swamps, FN values, grizzly habitat areas, stand level retention, etc.

50

- 6. Clarify the productive landbase losses associated with roads, trails, and landings. The unproductive widths used here were estimates and should ideally be supported with better data.
- 7. A review of ESA netdowns is suggested because the netdown approach used here was developed in 1999 and discussions during TSR3 indicated that it would be desirable to have better information. Some of the ESA's have logged blocks overlapping them. These were not netted down but they do indicate that an appropriate netdown % may be something less than 100%.
- 8. A better understanding of where risk managed targets for old seral will be applied would be useful. Similarly, understanding the degree to which licensees will work under the alternative riparian guidelines offered under the EBM land use order need to be better understood.
- 9. More information on why, how, and where dispersed retention is being implemented on the landbase would be desirable.
- 10. Non recoverable losses on the THLB should be updated to reflect changes such as yellow cedar decline.



## 8.0 References

- **B.C. Ministry of Agriculture and Lands**. 2007. *South Central Coast Land Use Objective Order*, August 2, 2007. Integrated Land Management Bureau. Nanaimo, BC.
- **B.C. Ministry of Agriculture and Lands**. 2008a. *Central and North Coast Land Use Objective Order*, January 3, 2008. Integrated Land Management Bureau. Nanaimo, BC.
- **B.C. Ministry of Agriculture and Lands**. 2008b. *Background and Intent Document for the South Central Coast and Central and North Coast Land Use Objectives Orders*, April 18, 2008. Integrated Land Management Bureau. Nanaimo, BC.
- **B.C. Ministry of Forests**. 2003a. *DFAM interim standards for data package preparation and timber supply analyses*. Timber Supply Branch.
- **B.C. Ministry of Forests**. 2003b. *DFAM interim standards for public and First Nations review*. Timber Supply Branch.
- **B.C. Ministry of Forests**. 2003c. *Modelling options for disturbance of areas outside the timber harvesting land base*. Draft working paper. Forest Analysis Branch.
- **B.C. Ministry of Forests**. 2003d. Supplemental guide for preparing the timber supply analysis package. Forest Analysis Branch.
- **B.C. Ministry of Forests**. 2003e. *Harvest flow considerations for the timber supply review. Draft working paper.* Forest Analysis Branch.
- B.C. Ministry of Forests. 2002. Landscape Unit Planning Guidebook, Forest Practices Code, Victoria, BC.
- **B.C. Ministry of Forests**. 1999a. *Timber Supply Review, Mid Coast Timber Supply Area Analysis Report.* Timber Supply Branch.
- B.C. Ministry of Forests. 1999b. Coastal Watershed Assessment Procedures Guidebook (v2.1 Apr 1999).
- **B.C. Ministry of Forests**. 1998. *Procedures for Factoring Visual Resources into Timber Supply Analyses*. Timber Supply Branch.
- **B.C.** Ministry of Forests and B.C. Ministry of Environment, Lands and Parks. 1995. *Biodiversity Guidebook*. Forest Practices Code. Victoria, BC.

**Forsite Consultants Ltd.** 2009. *Determination of an Economically Operable Land base for the Mid Coast TSA.* January 2009, Salmon Arm, BC.

**Government of B.C.** 2004. *Draft Mid Coast Land and Resource Management Plan – July 22, 2004*, BC. Ministry of Sustainable Resource Management.

**Pedersen, L**. 2000. *Mid Coast Timber Supply Area Rationale for Allowable Annual Cut (AAC) Determination*. B.C. Ministry of Forests, Timber Supply Branch.

**Timberline Natural Resource Consultants Ltd**. 2009. *Site Index Adjustment of the Mid Coast Timber Supply Area* (Project # BC0108405), January 2009, Timberline Natural Resource Consultants, Victoria, BC.

**Timberline Natural Resource Consultants Ltd**. 2008. *Kingcome Timber Supply Area TSR3 Data Package* (Project # 4061921), June 2008, Timberline Natural Resource Consultants, Victoria, BC.

# Appendix 1 — Acronyms

| AAC      | Allowable Annual Cut                                                | MP     | Management Plan                                                       |
|----------|---------------------------------------------------------------------|--------|-----------------------------------------------------------------------|
| Analysis | Timber Supply Analysis                                              | NCC    | Non-Commercial Cover                                                  |
| AU       | Analysis Unit                                                       | NDT    | Natural Disturbance Type                                              |
| BCTS     | BC Timber Sales (Formerly Small Business Forest Enterprise Program) | NP     | Non Productive                                                        |
| BEC      | Biogeoclimatic Ecosystem Classification                             | NRL    | Non-Recoverable Losses                                                |
| BEO      | Biodiversity Emphasis Options                                       | NSR    | Not Satisfactorily Restocked                                          |
| BGB      | Biodiversity Guidebook                                              | NSYT   | Natural Stand Yield Tables                                            |
| BL       | Balsam Fir                                                          | OAF    | Operational Adjustment Factor                                         |
| CF       | Chief Forester                                                      | OGMA   | Old-Growth Management Areas                                           |
| CFLB     | Crown Forested Land base                                            | PA     | Whitebark Pine                                                        |
| CW       | Western Red Cedar                                                   | PEM    | Predictive Ecosystem Mapping                                          |
| DBH      | Diameter at breast height (1.3m)                                    | PL     | Lodgepole Pine                                                        |
| DFO      | Department of Fisheries and Oceans                                  | PSP    | Permanent Sample Plot                                                 |
| DM       | District Manager                                                    | PSYU   | Public Sustained Yield Unit                                           |
| EBM      | Ecosystem Based Management                                          | PW     | White Pine                                                            |
| ESA      | Environmentally Sensitive Area                                      | PY     | Ponderosa Pine                                                        |
| FD       | Douglas Fir                                                         | RIC    | Resources Inventory Commission                                        |
| FIP/FC1  | Old Forest Cover Digital Files                                      | RM     | Regional Manager                                                      |
| FIZ      | Forest Inventory Zone                                               | RMZ    | Riparian Management Zone                                              |
| FPC      | Forest Practices Code                                               | RONV   | Range of Natural Variation                                            |
| FRPA     | Forest and Range Practices Act                                      | ROS    | Recreation Opportunity Spectrum                                       |
| GAR      | Government Action Regulation                                        | RTEB   | Resource Tenures and Engineering Branch                               |
| GIS      | Geographic Information System                                       | TFL    | Tree Farm License                                                     |
| HLPO     | Higher Level Plan Order                                             | THLB   | Timber Harvesting Land base                                           |
| HW       | Western Hemlock                                                     | TIPSY  | Table Interpolation Program for Stand Yields (growth and yield model) |
| ILMB     | Integrated Land Management Bureau                                   | TL     | Timber License                                                        |
| LA       | Alpine Larch                                                        | TSA    | Timber Supply Area                                                    |
| LRMP     | Local Resource Management Plan                                      | TSR    | Timber Supply Review                                                  |
| LU       | Landscape Unit                                                      | UWR    | Ungulate Winter Range                                                 |
| LW       | Western Larch                                                       | UREP   | Use, Recreation, and Enjoyment of Public                              |
| MAI      | Mean Annual Increment                                               | VDYP   | Variable Density Yield Predictor (growth and yield model)             |
| MHA      | Minimum Harvest Age                                                 | VEG Ht | Visually Effective Greenup Height                                     |
| MoAL     | Ministry of Agriculture and Lands                                   | VAC    | Visual Absorption Capability                                          |
| MoE      | Ministry of Environment                                             | VQO    | Visual Quality Objective                                              |
| MoF      | Ministry of Forests                                                 | VRI    | Vegetation Resource Inventory                                         |
| MSY      | Maximum Sustained Yield                                             | WHA    | Wildlife Habitat Area                                                 |
| MSYT     | Managed Stand Yield Tables                                          |        |                                                                       |



# Appendix 2 – Red and Blue listed species that occur or have the potential to occur in Mid Coast TSA

|    | Red-Listed (Endangered or Threatened) |                                   |                                          |  |  |
|----|---------------------------------------|-----------------------------------|------------------------------------------|--|--|
| #  | Category                              | Scientific Name                   | English Name                             |  |  |
| 1  | Vertebrate Animal                     | Accipiter gentilis laingi         | Northern Goshawk, laingi subspecies      |  |  |
| 2  |                                       | Brachyramphus marmoratus          | Marbled Murrelet                         |  |  |
| 3  |                                       | Dermochelys coriacea              | Leatherback                              |  |  |
| 4  |                                       | Fratercula corniculata            | Horned Puffin                            |  |  |
| 5  |                                       | Fulmarus glacialis                | Northern Fulmar                          |  |  |
| 6  |                                       | Gasterosteus sp. 18               | Misty Lake "Lake" Stickleback            |  |  |
| 7  |                                       | Gasterosteus sp. 19               | Misty Lake "Stream" Stickleback          |  |  |
| 8  |                                       | Gulo gulo vancouverensis          | Wolverine, vancouverensis subspecies     |  |  |
| 9  |                                       | Lampetra macrostoma               | Cowichan Lake Lamprey                    |  |  |
| 10 |                                       | Microtus townsendii cowani        | Townsend's Vole, cowani subspecies       |  |  |
| 11 |                                       | Myotis keenii                     | Keen's Myotis                            |  |  |
| 12 |                                       | Phalacrocorax pelagicus pelagicus | Pelagic Cormorant, pelagicus subspecies  |  |  |
| 13 |                                       | Phalacrocorax penicillatus        | Brandt's Cormorant                       |  |  |
| 14 |                                       | Sorex palustris brooksi           | American Water Shrew, brooksi subspecies |  |  |
| 15 |                                       | Uria aalge                        | Common Murre                             |  |  |
| 16 |                                       | Uria lomvia                       | Thick-billed Murre                       |  |  |
| 17 | Vascular Plant                        | Geum schofieldii                  | Queen Charlotte avens                    |  |  |
| 18 |                                       | Lathyrus littoralis               | grey beach peavine                       |  |  |
| 19 |                                       | Symphyotrichum ascendens          | long-leaved aster                        |  |  |

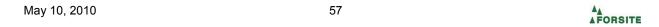
|    | Blue-Listed (Endangered or Threatened) |                              |                                        |  |
|----|----------------------------------------|------------------------------|----------------------------------------|--|
| #  | Category                               | Scientific Name              | English Name                           |  |
| 1  | Vertebrate Animal                      | Acrocheilus alutaceus        | Chiselmouth                            |  |
| 2  |                                        | Ardea herodias fannini       | Great Blue Heron, fannini subspecies   |  |
| 3  |                                        | Ascaphus truei               | Coastal Tailed Frog                    |  |
| 4  |                                        | Asio flammeus                | Short-eared Owl                        |  |
| 5  |                                        | Botaurus lentiginosus        | American Bittern                       |  |
| 6  |                                        | Cervus canadensis roosevelti | Roosevelt Elk                          |  |
| 7  |                                        | Contopus cooperi             | Olive-sided Flycatcher                 |  |
| 8  |                                        | Corynorhinus townsendii      | Townsend's Big-eared Bat               |  |
| 9  |                                        | Dendragapus fuliginosus      | Sooty Grouse                           |  |
| 10 |                                        | Eumetopias jubatus           | Steller Sea Lion                       |  |
| 11 |                                        | Euphagus carolinus           | Rusty Blackbird                        |  |
| 12 |                                        | Falco peregrinus pealei      | Peregrine Falcon, pealei subspecies    |  |
| 13 |                                        | Fratercula cirrhata          | Tufted Puffin                          |  |
| 14 |                                        | Glaucidium gnoma swarthi     | Northern Pygmy-Owl, swarthi subspecies |  |
| 15 |                                        | Gulo gulo luscus             | Wolverine, luscus subspecies           |  |
| 16 |                                        | Hirundo rustica              | Barn Swallow                           |  |

May 10, 2010 54



|      |               | Blue-Listed (Endangered                | or Threatened)                               |
|------|---------------|----------------------------------------|----------------------------------------------|
| # C  | ategory       | Scientific Name                        | English Name                                 |
| 17   |               | Lagopus leucura saxatilis              | White-tailed Ptarmigan, saxatilis subspecies |
| 18   |               | Martes pennanti                        | Fisher                                       |
| 19   |               | Megascops kennicottii kennicottii      | Western Screech-Owl, kennicottii subspecies  |
| 20   |               | Mustela erminea anguinae               | Ermine, anguinae subspecies                  |
| 21   |               | Oncorhynchus clarkii clarkii           | Cutthroat Trout, clarkii subspecies          |
| 22   |               | Patagioenas fasciata                   | Band-tailed Pigeon                           |
| 23   |               | Ptychoramphus aleuticus                | Cassin's Auklet                              |
| 24   |               | Rana aurora                            | Red-legged Frog                              |
| 25   |               | Rangifer tarandus pop. 15              | Caribou (northern mountain population)       |
| 26   |               | Salvelinus confluentus                 | Bull Trout                                   |
| 27   |               | Salvelinus malma                       | Dolly Varden                                 |
| 28   |               | Stenodus leucichthys                   | Inconnu                                      |
| 29   |               | Synthliboramphus antiquus              | Ancient Murrelet                             |
| 30   |               | Thaleichthys pacificus                 | Eulachon                                     |
| 31   |               | Ursus arctos                           | Grizzly Bear                                 |
| 32 V | ascular Plant | Abronia latifolia                      | yellow sand-verbena                          |
| 33   |               | Arnica chamissonis ssp. incana         | meadow arnica                                |
| 34   |               | Artemisia furcata var. heterophylla    | three-forked mugwort                         |
| 35   |               | Bidens amplissima                      | Vancouver Island beggarticks                 |
| 36   |               | Calystegia soldanella                  | beach bindweed                               |
| 37   |               | Carex glareosa var. amphigena          | lesser saltmarsh sedge                       |
| 38   |               | Carex gmelinii                         | Gmelin's sedge                               |
| 39   |               | Carex heleonastes                      | Hudson Bay sedge                             |
| 40   |               | Carex lenticularis var. dolia          | Enander's sedge                              |
| 41   |               | Carex pansa                            | sand-dune sedge                              |
| 42   |               | Carex paysonis                         | Payson's sedge                               |
| 43   |               | Douglasia laevigata var. ciliolata     | smooth douglasia                             |
| 44   |               | Draba lonchocarpa var. vestita         | lance-fruited draba                          |
| 45   |               | Draba ruaxes                           | coast mountain draba                         |
| 46   |               | Epilobium ciliatum ssp. watsonii       | purple-leaved willowherb                     |
| 47   |               | Epilobium glaberrimum ssp. fastigiatum | smooth willowherb                            |
| 48   |               | Epilobium x treleasianum               | Trelease's hybrid willowherb                 |
| 49   |               | Erythronium montanum                   | white glacier lily                           |
| 50   |               | Glehnia littoralis ssp. leiocarpa      | American glehnia                             |
| 51   |               | Hedysarum occidentale                  | western hedysarum                            |
| 52   |               | Hippuris tetraphylla                   | four-leaved mare's-tail                      |
| 53   |               | Juncus stygius                         | bog rush                                     |
| 54   |               | Lasthenia maritima                     | hairy goldfields                             |
| 55   |               | Lloydia serotina var. flava            | alp lily                                     |
| 56   |               | Malaxis paludosa                       | bog adder's-mouth orchid                     |

May 10, 2010 55




|    | Blue-Listed (Endangered or Threatened) |                                     |                                   |
|----|----------------------------------------|-------------------------------------|-----------------------------------|
| #  | Category                               | Scientific Name                     | English Name                      |
| 57 |                                        | Montia chamissoi                    | Chamisso's montia                 |
| 58 |                                        | Myriophyllum quitense               | waterwort water-milfoil           |
| 59 |                                        | Nymphaea tetragona                  | pygmy waterlily                   |
| 60 |                                        | Ophioglossum pusillum               | northern adder's-tongue           |
| 61 |                                        | Pinus albicaulis                    | whitebark pine                    |
| 62 |                                        | Pleuropogon refractus               | nodding semaphoregrass            |
| 63 |                                        | Polemonium elegans                  | elegant Jacob's-ladder            |
| 64 |                                        | Polystichum setigerum               | Alaska holly fern                 |
| 65 |                                        | Potentilla nivea var. pentaphylla   | five-leaved cinquefoil            |
| 66 |                                        | Pyrola elliptica                    | white wintergreen                 |
| 67 |                                        | Sanguisorba menziesii               | Menzies' burnet                   |
| 68 |                                        | Saxifraga nelsoniana ssp. carlottae | dotted saxifrage                  |
| 69 |                                        | Senecio moresbiensis                | Queen Charlotte butterweed        |
| 70 |                                        | Viola biflora ssp. carlottae        | Queen Charlotte twinflower violet |

Source: BC Species and Ecosystems Explorer Database on-line. Ministry of Environment, Canada. [http://a100.gov.bc.ca/pub/eswp/search.do?method=reset, Accessed November 10, 2009]



## **Appendix 3 – Data Inputs and Modeling Assumptions**



## Mid Coast Timber Supply Area Timber Supply Review #3

# Analysis Assumptions Document (Data Package)

Version 2.3

May 10, 2010

## **Prepared for:**

Mid Coast TSA Licensee/Agency Group

## **Prepared By:**

Forsite Box 2079, 330-42<sup>nd</sup> Street SW Salmon Arm, B.C. V1E 4R1 (250) 832-3366 Cam Brown, MF, RPF



Record of Changes since V1.0 (March 10, 2009)

| Change                                                                                                                                 | Who          | Date           |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| Typos and minor text changes suggested by licensees and MoF,                                                                           | Cam Brown    | May 15, 2009   |
| plus NRL values reduced to reflect smaller THLB than in TSR2.                                                                          |              | ,              |
| Detail added for recreation and riparian netdowns.                                                                                     | Cam Brown    | May 20, 2009   |
| Fixed typo that showed total area of existing road was 3,721 ha                                                                        | Cam Brown    | June 17, 2009  |
| instead of 4,937 ha.                                                                                                                   |              | ,              |
| Corrected ocean classification so it was excluded from Total Area in                                                                   |              |                |
| netdown table. Also fixed misclassified Indian Reserves and TFL                                                                        |              |                |
| TL's.                                                                                                                                  |              |                |
| Numerous sections changed to reflect the EBM Order Amendments                                                                          | Cam Brown    | June 25, 2009  |
| made legal in March 2009. This included changes to Cw/Yc stand                                                                         |              |                |
| retention (Cedar Stewardship Areas), Important Fisheries                                                                               |              |                |
| Watersheds / Upland Streams areas, High Value Fish Habitat                                                                             |              |                |
| (Kimsquit), Old Seral Retention requirements, and Grizzly Bear                                                                         |              |                |
| Habitat areas.                                                                                                                         |              |                |
| Genetic gains for Fd and Cw were adjusted to reflect the portion of                                                                    | Cam Brown    | June 25, 2009  |
| the THLB where the species are planted (using AU's and SPU's).                                                                         |              |                |
| Text clarifications/edits based on review comments from MFR                                                                            | Cam Brown    | June 25, 2009  |
| district staff (June 18-09 email from Jennifer Barolet). Included                                                                      |              |                |
| regen assumptions adjustments (species %'s, natural vs planted                                                                         |              |                |
| %'s, and initial planting density to 900 sph.                                                                                          |              |                |
| Parks/Conservancy names updated, grizzly bear Section 7 Notice                                                                         | Jim Brown    | July 6, 2009   |
| text added, Cedar Stewardship Areas text added.                                                                                        |              |                |
| Operability dataset was updated so that ESA soils polygons were                                                                        | Cam Brown    | July 10, 2009  |
| not excluded by this dataset (fixed error in dataset) – this made the                                                                  |              |                |
| ESA netdown larger.                                                                                                                    | 0 0          | 11.00.000      |
| Stand level retention % was increased to 4.4% (incremental above                                                                       | Cam Brown    | July 22, 2009  |
| all other netdowns).                                                                                                                   | 0 0          |                |
| Fixed netdown where it was removing previously logged sites with                                                                       | Cam Brown    | Sept 17, 2009  |
| low sites and ESAs.                                                                                                                    | O D          | 0-144 0000     |
| Dispersed Retention and Visuals modeling methodology included in                                                                       | Cam Brown    | Oct 14, 2009   |
| section 5.1, 5.2, and 8.2.                                                                                                             |              |                |
| A new AU (315) was added in section 4.1 for existing dispersed                                                                         |              |                |
| retention stands. Future dispersed retention treatments had yields                                                                     |              |                |
| factored off of clearcut AU's.  Minimum harvest ages updated to include dispersed retention,                                           | Cam Brown    | Oct 14, 2000   |
| reflect adjusted regen assumptions, fix typos, and shift to 5 year                                                                     | Calli blowii | Oct 14, 2009   |
| increments (instead of 10 yr).                                                                                                         |              |                |
| Appendix A updated to include Dispersed Retention Yield (AU 315).                                                                      | Cam Brown    | Oct 14, 2009   |
| Appendix A updated to include dispersed Retention Field (A0.315).  Appendix B updated to reflect the old seral units being modeled and | Cam Brown    | Oct 14, 2009   |
| their associated targets as taken from Sched 4 in the EBM orders.                                                                      | Calli DiOWII | 001 19, 2009   |
| Natural disturbance regime altered to be consistent with RONV old                                                                      | Cam Brown    | Dec 15, 2009   |
| seral targets (section 7.2).                                                                                                           | Cam Diowii   | 200 10, 2000   |
| Rationale added for modeling of harvest profile limits (partitions).                                                                   | Mike Landers | March 1, 2010  |
| Typos and comments suggested by the MoF (AAC's added to                                                                                | Cam Brown    | April 14, 2010 |
| harvest profile tables (section 6.3)                                                                                                   | Cam Brown    | 7 φιπ 1π, 2010 |
| Clarification added re group selection vs clearcut with reserves and                                                                   | Cam Brown    | May 10, 2010   |
| productivity impacts associated with forest edge. Sec 5.1                                                                              | Cam Diowii   | 11103 10, 2010 |
| productivity impublic accordated with forest edge. Oct 0.1                                                                             | <u>l</u>     |                |

May 10, 2010 i

## **ACKNOWLEDGEMENTS**

The support and contributions from the following people and organizations was instrumental in the compilation of this document:

International Forest Products Ltd. Mike Landers

Angus Hope Gerry Sommers Joe Leblanc

Western Forest Products Ltd. Peter Kofoed

B.C. Timber Sales Bob Brand

Lisa Gibbons

Heiltsuk First Nation Rina Gemeinhardt

Gwa'Sala-'Nakwaxda'xw First Nation Ted Stevens

Capacity Forest Management Corby Lamb

Jason Swanson Ryan Clark

MFR – Coast Forest Region Jim Brown

MFR - North Island - Central Coast Forest District Christina Mardell

Jennifer Barolet Paul Barolet

Forsite Cam Brown

Simon Moreira-Munoz

Stephen Smyrl

This project was funded by the Forest Investment Account and was coordinated by Ian Robertson / Wendy Ravai on behalf of International Forest Products Ltd.

This work was prepared directly by or under the direct supervision of Cam Brown, RPF.

May 10, 2010 ii

## **TABLE OF CONTENTS**

| 1.0        | INTRODUCTION                                                  | 1  |
|------------|---------------------------------------------------------------|----|
| 1.1        | Purpose of the data package                                   |    |
| 1.2        | Roles and Responsibilities                                    |    |
| 1.3        | Description of the Land base                                  |    |
| 1.4        | History of the Annual Allowable Cut                           | 4  |
| 1.5        | Current Practice and EBM                                      |    |
| 2.0        | THEMATIC DATA                                                 | 6  |
| 2.1        | Data Sources                                                  | 6  |
| 2.2        | Forest Cover Inventory                                        |    |
| 3.0        | TIMBER HARVESTING LAND BASE                                   |    |
|            |                                                               |    |
| 3.1<br>3.2 | Land Base Definitions                                         |    |
| _          |                                                               |    |
|            | .2.1 Ownership classes not part of the TSA                    | 10 |
| _          | .2.3 Non-commercial cover                                     |    |
|            | .2.4 Roads, trails, and landings                              |    |
| 3.3        |                                                               |    |
|            | 3.1 Parks and Protected Areas                                 |    |
|            | .3.2 Inoperable or Inaccessible Areas                         |    |
|            | .3.3 ESAs and Unstable Terrain                                |    |
|            | .3.4 Non-Merchantable or Problem Forest Types                 |    |
| _          | .3.5 Low Productivity Sites                                   |    |
|            | .3.6 Cultural Heritage Resource Deductions                    |    |
|            | .3.7 Karst                                                    |    |
|            | .3.8 Wildlife Habitat Areas (WHA's)                           |    |
|            | .3.9 Mountain Goat Winter Range                               |    |
|            | .3.10 FRPA Riparian Reserve and Management Zones              | 17 |
|            | .3.11 Recreation Features                                     |    |
|            | .3.12 EBM Riparian Management                                 |    |
|            | .3.13 Grizzly Bear Habitat (EBM Obj. 17)                      |    |
| 3.4        |                                                               |    |
|            | .4.1 EBM Objective 4, 5, 6, 7 – First Nations Considerations  |    |
| _          | .4.2 EBM Objective 15 – Red and Blue Listed Plant Communities | 22 |
| _          | .4.3 Stand Level Retention (EBM Obj. 16)                      |    |
| 3.5        | Timber License Reversions                                     |    |
| 3.6        | Changes From TSR2                                             | 25 |
| 4.0        | GROWTH AND YIELD                                              | 26 |
| 4.1        | Analysis Units                                                | 26 |
| 4.2        | Site Index                                                    | 27 |
| 4          | .2.1 Site Index Adjustment for Managed Stands                 | 27 |
| 4          | .2.2 Site Curves                                              |    |
| 4.3        | Utilization Level                                             | 27 |
| 4.4        | Decay, Waste and Breakage for Unmanaged Stands                |    |
| 4.5        | Operational Adjustment Factors for Managed Stands             | 28 |
| 4.6        | Natural Stand Volume Projections                              | 28 |
| 4.7        | Managed Stand Yield Tables                                    |    |
| 4.8        | Existing Timber Volume Check                                  | 29 |
| 5.0        | SILVICULTURE                                                  |    |
| 5.1        | Silviculture management regimes                               | 31 |

| 5.2<br>5.3 | Regeneration AssumptionsRegeneration delay                         |              |
|------------|--------------------------------------------------------------------|--------------|
| 5.4        | Gene resources — use of select seed                                |              |
| 5.5        | Silviculture History (defining existing managed stands)            |              |
| 5.6        | Backlog and current not satisfactorily restocked areas (NSR)       | 36           |
| 5.7        | Incremental Silviculture and Commercial Thinning                   | 36           |
| 6.0        | TIMBER HARVESTING                                                  | 36           |
| 6.1        | Minimum Harvestable Age / Merchantability Standards                | 36           |
| 6.2        | Harvest Priorities / Target Weightings                             |              |
| 6.3        | Harvest Profiles                                                   | 38           |
| 7.0        | NATURAL FOREST DISTURBANCE                                         | 39           |
| 7.1        | Unsalvaged Losses on the THLB                                      | 39           |
| 7.2        | Disturbance in the Non-THLB                                        |              |
| 8.0        | INTEGRATED RESOURCE MANAGEMENT                                     | 41           |
| 8.1        | Cutblock Size and Adjacency                                        | 12           |
| 8.2        | Visual resources                                                   |              |
| 8.3        | Community Watersheds                                               |              |
| 8.4        | Black Tailed Deer Winter Range                                     |              |
| 8.5        | Ecosystem Based Management (EBM) Objectives                        |              |
| _          | .5.1 EBM Objective 3 – First Nations Traditional Forest Resources  |              |
|            | .5.2 EBM Objective 4 – First Nations Traditional Heritage Features |              |
|            | .5.3 EBM Objective 5 – Culturally Modified Trees                   |              |
|            | .5.4 EBM Objective 6 – Monumental Cedar                            |              |
|            | .5.6 EBM Objective 8 – Important Fisheries Watersheds              |              |
|            | .5.7 EBM Objective 9 – High Value Fish Habitat (HVFH)              |              |
|            | .5.8 EBM Objective 10 – Aquatic Non High Value Fish Habitat        |              |
| 8.         | .5.9 EBM Objective 11– Forested Swamps                             |              |
|            | .5.10 EBM Objective 12 – Upland Streams                            |              |
|            | .5.11 EBM Objective 13 – Active Fluvial Units                      |              |
|            | .5.12 EBM Objective 14 – Landscape Level Biodiversity              |              |
| _          | .5.13 EBM Objective 15 – Red and Blue Listed Plant Communities     | 48           |
|            | .5.14 EBM Objective 16 – Stand Level Retention                     |              |
|            | TIMBER SUPPLY MODELING                                             |              |
|            |                                                                    |              |
| 9.1        | Timber Supply Model                                                |              |
| 9.2<br>9.3 | Harvest Flow Objectives                                            |              |
| 9.3<br>9.4 | Long Run Sustained Yield                                           |              |
| 9.5        | Sensitivities and Critical Issues                                  |              |
|            | SARY                                                               |              |
|            |                                                                    |              |
| ACRO       | DNYMS                                                              | 56           |
| REFE       | RENCES                                                             | 57           |
| APPF       | NDIX A: YIELD CURVES                                               | 58           |
|            |                                                                    |              |
|            | NDIX B: OLD SERAL FOREST COVER REQUIREMENTS BY MINISTERIAL ORDER   | AREA/LU/SITE |

## **LIST OF TABLES**

| I ABLE 1. H | ROLES AND RESPONSIBILITIES                                                            | 2  |
|-------------|---------------------------------------------------------------------------------------|----|
|             | DATA LAYERS                                                                           |    |
| TABLE 3. L  | AND BASE AREA NETDOWN SUMMARY                                                         | 8  |
| TABLE 4. (  | DWNERSHIP CODES AND APPLICATION IN TSR3                                               | 10 |
| TABLE 5. N  | NON-FOREST AND NON-PRODUCTIVE AREA                                                    | 10 |
| TABLE 6. N  | Non-commercial cover                                                                  | 11 |
| TABLE 7. A  | ACCESS FEATURE CLASSIFICATION                                                         | 11 |
| TABLE 8. F  | PARKS AND ECOLOGICAL RESERVES IN MID COAST TSA                                        | 12 |
| TABLE 9. I  | NOPERABLE AREAS                                                                       | 14 |
| TABLE 10.   | ESA NETDOWN AREAS                                                                     | 14 |
|             | Non-merchantable forest types                                                         |    |
|             | LOW SITE NETDOWNS                                                                     |    |
|             | REDUCTIONS FOR ESTABLISHED WHA'S                                                      |    |
|             | REDUCTIONS FOR MOUNTAIN GOAT                                                          |    |
|             | LAND BASE REDUCTIONS FOR STREAMS                                                      |    |
|             | LAND BASE REDUCTIONS FOR LAKES AND WETLANDS                                           |    |
|             | RECREATION NETDOWNS                                                                   |    |
|             | REDUCTIONS FOR HVFH                                                                   |    |
|             | RIPARIAN RETENTION REQUIREMENTS FOR AQUATIC NON HVFH                                  |    |
|             | REDUCTIONS FOR AQUATIC NONHVFH                                                        |    |
|             | REDUCTIONS FOR ACTIVE FLUVIAL UNITS                                                   |    |
|             | REDUCTIONS FOR GRIZZLY BEAR HABITAT                                                   |    |
|             | TIMBER LICENCES OCCURRING IN THE MID COAST TSA                                        |    |
|             | TIMBER LICENSE AREA SUMMARY                                                           |    |
|             | Analysis Unit Descriptions                                                            |    |
|             | CW AND HW SITE INDEX ADJUSTMENT STATISTICS.                                           |    |
|             | SITE INDEX SOURCE                                                                     |    |
|             | UTILIZATION LEVELS.                                                                   |    |
|             | EXISTING TIMBER VOLUME CHECK BY AU                                                    |    |
|             | EXISTING TIMBER VOLUME CHECK BY AGE CLASS                                             |    |
|             | REGENERATION ASSUMPTIONS (TIPSY INPUTS) FUTURE MANAGED STANDS                         |    |
|             | REGENERATION ASSUMPTIONS (TIPSY INPUTS) EXISTING MANAGED STANDS                       |    |
|             | SEED PLANNING UNITS WITHIN THE MID COAST TSA (CLASS A SEED)                           |    |
|             | SEED PLANNING UNITS (CLASS A SEED) GENETIC WORTH AND SEED AVAILABILITY                |    |
|             | NET GENETIC WORTH BY SPECIES TO BE APPLIED IN TIMBER SUPPLY MODEL                     |    |
|             | MANAGED AND NATURAL STAND AREA                                                        |    |
|             | MINIMUM HARVEST AGES                                                                  |    |
|             | RECENT HARVEST PERFORMANCE BASED ON LICENSEE ANNUAL REPORTING SUBMISSIONS TO MFR      |    |
|             | Non-recoverable losses                                                                |    |
|             | CALCULATION OF AREA TO BE DISTURBED ANNUALLY IN FORESTED NON-THLB BY BEC(VARIANT)/NDT |    |
|             | SUMMARY OF MANAGEMENT ISSUES AND MODELLING ASSUMPTIONS                                |    |
|             | GREEN-UP REQUIREMENTS                                                                 |    |
|             | MODELLING OF VISUAL MANAGEMENT                                                        |    |
|             | VISUALLY EFFECTIVE GREEN-UP (VEG) HEIGHTS AND AGES BY SLOPE CLASS                     |    |
|             | AREAS WITH VISUAL QUALITY OBJECTIVES                                                  |    |
|             | HARVEST LIMITS APPLIED TO COMMUNITY WATERSHEDS                                        |    |
|             | SUMMARY OF COVER CONSTRAINTS FOR BLACK TAILED DEER BY LANDSCAPE UNIT                  |    |
|             | AREAS IMPACTED BY BLACK TAILED DEER COVER CONSTRAINTS                                 |    |
|             | MINISTERIAL ORDER AREAS FOR THE MID COAST TSA                                         |    |
|             | AREAS IMPACTED BY IMPORTANT FISHERIES WATERSHED CONSTRAINTS                           |    |
|             | AREAS MANAGED FOR UPLAND STREAMS                                                      |    |
|             | LRSY VALUES FOR NATURAL AND MANAGED STANDS                                            |    |
|             |                                                                                       |    |

# **LIST OF FIGURES**

| FIGURE 1. MID COAST TSA LAND BASE                                                  | 3  |
|------------------------------------------------------------------------------------|----|
| FIGURE 2. BEC ZONES PRESENT IN MID COAST TSA                                       |    |
| FIGURE 3. LOCATION OF MINISTERIAL ORDER BOUNDARIES (2009) WITHIN THE MID COAST TSA |    |
| FIGURE 4. MID COAST LAND BASE AREA SUMMARY                                         |    |
| FIGURE 5. MID COAST TSA LAND BASE DEFINITION MAP                                   | 9  |
| FIGURE 6. NET VOLUMES BY AU BASED ON AU CURVES OR FOREST INVENTORY DATA            | 30 |
| FIGURE 7. NET VOLUMES BY AGE CLASS BASED ON AU CURVES OR FOREST INVENTORY DATA     |    |

May 10, 2010 Vi

## 1.0 Introduction

This document outlines the basic information and assumptions that are proposed for use in the provincial Timber Supply Review (TSR) process currently underway in the Mid Coast Timber Supply Area (TSA). The purpose of the review is to examine effects of current forest management practices on the short- and long-term availability of timber for harvesting in the TSA. A review of this type is intended to be completed at least once every five years in order to capture changes in data, practices, policy, or legislation influencing forest management in the TSA. The previous review (TSR2) was completed in June 1999 with a final Annual Allowable Cut (AAC) determination on June 1, 2000 establishing and AAC of 998,000 m³/yr. In July of 2002 and September 2006, the Chief Forester set out orders that decreased the AAC because of new designated areas (conservancy and biodiversity areas). The AAC has been set at 768,000 m³/yr since September 2006. The current TSR process will work towards having all work completed by Dec 31, 2009 such that a new AAC determination can be in place by June 2010.

This timber supply review will focus on a single forest management scenario that reflects <u>current management practices</u> in the TSA. Thus, the analysis goal is to model "what-is", and not "what-if". Current practice here will reflect the land base removals for new parks, conservancies and biodiversity areas associated with the Central Coast Land Use Decision (CCLUD) and Ecosystem Based Management (EBM) practices as described in the Ministerial Land Use Orders. In addition to this current management or "Base Case" scenario, an assessment of how results might be affected by uncertainties is completed using a number of sensitivity analyses. Together, the sensitivity analyses and the Base Case form a solid foundation for discussions among government and stakeholders about appropriate timber harvesting levels.

It is recognized that ongoing treaty negotiations with First Nations have the potential to impact timber supply in the TSA. However, "current management" is the underlying assumption for the analysis and no settlement has yet been reached. The final results from treaty negotiations will be modeled in subsequent timber supply reviews that have the benefit of legal direction in this area.

This report is the first of three documents that will be released during the TSR3 process for Mid Coast TSA. This document provides detailed technical information on the upcoming analysis. A separate document called the Analysis Report will summarize the results of the timber supply analysis and will provide a focus for public discussion. The final document will outline the Chief Forester's AAC decision and the reasoning behind it.

## 1.1 Purpose of the data package

The purpose of this data package is to:

- provide a detailed accounting of the land base, growth and yield, and management assumptions related to
  timber supply that the Chief Forester must consider under the Forest Act when determining an allowable
  annual cut (AAC) for the Mid Coast TSA and how these will be applied and modeled in the timber supply
  analysis;
- provide the evidentiary basis for the information used in the analysis.

## 1.2 Roles and Responsibilities

The Mid Coast Licensee-Agency group chose to take on the responsibility of leading the Mid Coast TSR3 process in 2008. The group consists of major licensees and First Nations with harvesting tenure in the Mid Coast TSA. To deliver on this commitment, the planning and analysis work associated with the TSR was tendered and subsequently awarded to Forsite Consultants Ltd.

Government agencies play a key role in this TSR process – they set and enforce standards and are responsible for approval of the final Data Package and Analysis Reports. The Ministry of Forests and Range (MFR) provides technical support, facilitate resolution of issues, and validate technical information. Various resource

specialists in the Ministries of Agriculture and Land (MoAL), Environment (MoE) and Tourism, Culture and Arts (MoTCA) contribute their knowledge and experience. The following table shows the general roles and responsibilities associated with the timber supply analysis leading to an AAC determination.

Table 1. Roles and responsibilities

| LICENSEE ACENCY CROUD Obligations                                                                                                                                                                                                                                                                                                | Government Obligations                                                                                |                                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| LICENSEE-AGENCY GROUP Obligations                                                                                                                                                                                                                                                                                                | Forest Analysis Branch                                                                                | District And Regional Staff                                                                                         |  |
| Compile data needed for the timber supply analysis, including forest cover and other data related to forest and land characteristics, administration and management regimes. Provide a summary of the data, management assumptions, and modeling methods to be applied in the timber supply analysis in a Data Package document. | Set standards for the data package                                                                    | Provide data, information, and knowledge of current practices in the TSA.                                           |  |
| Provide information to the public and First Nations and summarize comments received for government.                                                                                                                                                                                                                              |                                                                                                       |                                                                                                                     |  |
| Make any necessary changes to the data package and submit for government approval.                                                                                                                                                                                                                                               | Review and accept the data package (focus on how data is to be applied in Timber supply analysis).    | Review and accept the data package (focus on confirming current practice).                                          |  |
| Perform and document a timber supply analysis according to standards provided by the Ministry of Forests.                                                                                                                                                                                                                        | Provide technical advice and set standards for the analysis and reporting.                            |                                                                                                                     |  |
| Submit an Analysis Report and digital file containing the complete dataset used in the timber supply analysis.                                                                                                                                                                                                                   | Review and accept (together with the chief forester) the analysis report.                             | Review the analysis report to ensure local issues and current practices are adequately reflected.                   |  |
| Provide information to the public and First Nations and summarize comments received for government.                                                                                                                                                                                                                              |                                                                                                       | Formal consultation obligations.                                                                                    |  |
| Provide additional information as required by the chief forester.                                                                                                                                                                                                                                                                | Compile and prepare information for presentation to the chief forester at the determination meetings. | Assist in compiling and preparing information for presentation to the chief forester at the determination meetings. |  |

## 1.3 Description of the Land base

The Mid Coast TSA is located on the central coast of British Columbia and covers approximately 2.2 million ha. The Mid Coast TSA extends from Cape Caution in the south to Sheep Passage in the north and is bordered by the Pacific Ocean to the west and Tweedsmuir Park to the East (Figure 1). The northern boundary is made up of Tree Farm License (TFL) 25, the Fiordland Recreation Area, and the Kitlope Heritage Conservancy Protected Area.

The terrain is rugged and variable including low lying islands, outlying coastal mainland areas, inland mountainous regions, high elevation non-forested areas, and productive valley bottom steep sided inlets. The forests of the Mid Coast are dominated by four main biogeoclimatic zones as illustrated in Figure 2 below and include Coastal Western Hemlock (CWH), Mountain Hemlock (MH), Engelmann Spruce Subalpine Fir (ESSF), and alpine (CMA). Other zones such as IDF, MS, SBPS, and SBS exist in the transition zone to the interior ecosystems that is contained entirely within Tweedsmuir Park.

The Mid Coast TSA exhibits high levels of diversity in landscape, wildlife, and culture. Diverse populations of both marine and terrestrial wildlife exist in the TSA. The TSA's forests are culturally rich and diversified as well. Archaeological work has yielded evidence of some of the oldest First Nation's habitations on the BC coast.

The Mid Coast TSA is remote and sparsely populated, with the majority of the population living in the Bella Coola valley. Other populated areas include small isolated communities along the outer coast.

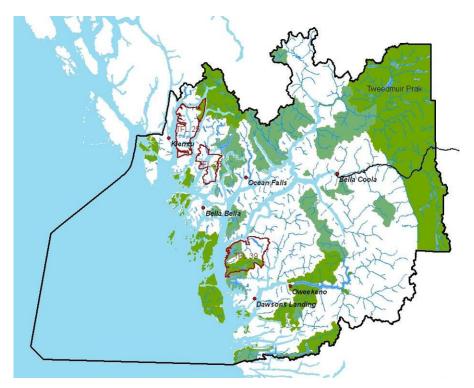



Figure 1. Mid Coast TSA land base

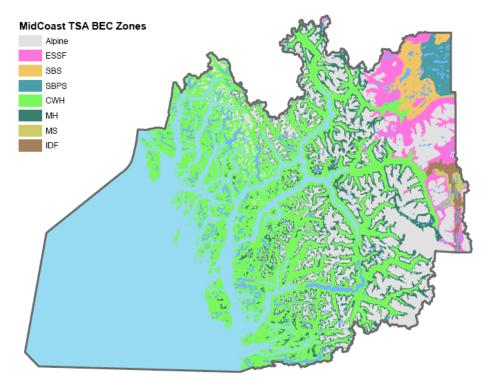



Figure 2. BEC Zones present in Mid Coast TSA

## 1.4 History of the Annual Allowable Cut

The history of the Annual Allowable Cut (AAC) for the Mid Coast TSA is summarized below.

- During the mid 1970's to the early 1990's the AAC on the Mid Coast was periodically increased to meet elevating demand for access to timber and improved harvesting practices that allowed utilization of poor forest types. In 1992 the AAC was 1,516,600 m<sup>3</sup>/yr.
- Effective January 1992 the AAC was reduced by 39 % as poorer quality stands were not being harvested to the extent previously expected, which left the AAC at 1,000,000 m³/yr. Also a partition was introduced that required 130,000 m³/yr of the AAC come from stands of a height class three (trees over 120 years of age and less than 28.5 m in height).
- From 1992-1995 the AAC remained unchanged however the partition requirement was modified to include height class three stands on the outer coast, decadent hemlock-balsam stands outside the operability line, and stands that are accessible by helicopter outside operability lines.
- In June 2000 the AAC for the Mid Coast was determined to be 998 000 m³/yr. The reduction was to account for a newly issued probationary community forest agreements (PCFA). Within the 2000 AAC existed a partition of 200,000 m³/yr requiring harvesting to occur in poor or low site hemlock / balsam leading stands (site index ≤17m). The Chief Forester also stated that at least 59,000 m³/yr should come from the outer coast and 178,000 m³/yr should come from outside the conventional operability lines. These are not formal partitions but expectations that will be evaluated in the next TSR when defining the new timber harvesting land base.
- In July of 2002 the chief forester issued an order decreasing the AAC by 203,000 m<sup>3</sup>/yr to account for establishment of the Central Coast Designated Area. This volume was removed from both the partition and the overall total volume and remained unchanged until the Designated Area section in the Forest Act expired in January 2006.
- In September of 2006 a new Designated Area section was established in the Forest Act and the Chief Forester reinstated the order that decreased the AAC to the current level of 768,000 m<sup>3</sup>/yr.

#### 1.5 Current Practice and EBM

Within the general TSR process, current management practices are primarily defined by:

- Legislation (e.g. Forest and Range Practices Act and its Regulations)
- Ministerial Orders (e.g. South Central Coast Order, Central Coast Designated Areas),
- Government Actions Regulation Orders (e.g. Karst, WHA's, Visuals),
- Current management practices described in Forest Stewardship Plans,
- Other approved BC Forest Service and joint agency forest management practices and policy,
- Current practices of forest tenure holders.

As a result of the Central Coast Land Use decision and the establishment of the South Central Coast Order (Aug 2, 2007) and the Central and North Coast Order (Jan 3, 2008), land use objectives implementing Ecosystem Base Management (EBM) were put in place for the whole of the Mid Coast TSA (Figure 3). Draft amendments to these orders were made public in December 2008 and available for review and comment until Feb 16, 2009. They were then made legal in March 2009. These legal objectives now direct forest practices implemented under the Forest and Range Practices Act. Thus, current practice for Mid Coast TSR3 includes both FRPA and the amended EBM management guidelines. The elements of EBM are discussed in detail throughout this document.

The EBM orders and background data/interpretation information can be found here: http://ilmbwww.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/index.html




Figure 3. Location of Ministerial Order Boundaries (2009) within the Mid Coast TSA

A list of the EBM elements included in the orders is provided below. These elements are discussed in detail later in the document (see referenced section numbers).

#### First Nations Elements

- Objective 3: First Nations' traditional forest resources (Section 3.4.1);
- Objective 4: First Nations' traditional heritage features (Section 3.4.1);
- Objective 5: Culturally modified trees (Section 3.4.1);
- Objective 6: Monumental cedar (Section 3.4.1);
- Objective 7: Stand-level retention of Western red and Yellow Cedar (Section 3.4.1);

#### Aquatic Habitats

- Objective 8: Important fisheries watersheds (Section 8.5.6);
- Objective 9: High value fish habitat (Section 3.3.12.1);
- Objective 10: Aquatic habitat that is not high value fish habitat (Section 3.3.12.2);
- Objective 11: Forested swamps (Section 8.5.9);
- Objective 12: Upland streams (Section 8.5.10);
- Objective 13: Active fluvial units (Section 3.3.12.4);

#### Biodiversity

- Objective 14: Landscape-level biodiversity (Section 8.5.12);
- Objective 15: Red-listed and blue-listed plant communities (Section 3.4.2);
- Objective 16: Stand-level retention (Section 3.4.3); and
- Objective 17: Grizzly bear habitat (Section 8.5.15).

# 2.0 Thematic Data

## 2.1 Data Sources

Many different data layers were compiled to provide input into the timber supply analyses described in this report and they are documented in Table 2. The use of these data layers is described in subsequent sections of this appendix.

Table 2. Data layers

| Data Description                       | Forsite<br>Coverage<br>Name | Data<br>Source | Description                                                                                                                                                                                                                                           | Vintage  |
|----------------------------------------|-----------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Administrative Line Wor                | k                           |                |                                                                                                                                                                                                                                                       |          |
| TSA Boundary                           | TSABDY                      | LRDW           | Outer boundary of the TSA.                                                                                                                                                                                                                            | 2003     |
| Landscape Units/BEO                    | LU                          | ILMB           | Legal LU boundaries from LRDW. (identical to LU's in EBM orders)                                                                                                                                                                                      | 2000     |
| Ownership                              | Owner2008                   | Forsite        | Forsite created using data from LRDW (parks, CFA's, TFL's). TSR2 ownership file (IR's, TL's, Private, UREP, Misc Resv), and ILMB Nanaimo conservancy data. Edits made to TL's.                                                                        | 2008     |
| Ministerial Order<br>Boundaries        | Order_bdy                   | ILMB           | ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm_data. Landscape units were dissolved to make up the order boundaries.                                                                                                                              | 2009     |
| Inventories                            |                             |                |                                                                                                                                                                                                                                                       |          |
| BEC                                    | Abec_bc_v7                  | LRDW           | Biogeoclimatic units with NDT added based on BEC Web definitions                                                                                                                                                                                      | 2008     |
| DEM for slope classes                  | Slope_mc                    | TRIM           | Elevation data points used to generate slope classes.                                                                                                                                                                                                 |          |
| Depletions                             | Blks_Mar08                  | Forsite        | Forsite compiled using block data from licensees, results, FTA                                                                                                                                                                                        | 2008     |
| Vegetation                             | Veg                         | LRDW           | Projected to Jan 1, 2008. Site series surrogate values added.                                                                                                                                                                                         | 2008     |
| ESA                                    | ESA                         | TSR2           | ILMB Nanaimo. TSR2 ESA were added to the current Veg file.                                                                                                                                                                                            | Pre 1996 |
| Inner/Outer Coast                      | Partition                   | TSR2           | ILMB Naniamo.                                                                                                                                                                                                                                         | 1999     |
| Operability                            | Oper09                      | Forsite        | Developed by Forsite using economic operability modeling. Updated to include ESA areas in July 2009                                                                                                                                                   | 2009     |
| Registered<br>Heritage/ARCH            | MC_ArchSites                | Arch<br>Branch | Polygon data indicating legally protected archeological sites - provided by John McMurdo.                                                                                                                                                             | 2008     |
| Roads                                  | Roads08                     | Forsite        | Forsite developed using licensee data, FTEN, TRIM, Timberline Woodshed project roads. Includes both existing and proposed rds.                                                                                                                        | 2008     |
| Karst                                  | Karst                       | LRDW           | Gives Karst likelihood and Karst development                                                                                                                                                                                                          | 2003     |
| EBM                                    |                             |                |                                                                                                                                                                                                                                                       |          |
| Active Fluvial Units                   | Flood08                     | Forsite        | Created using CC_flood cover from LRMP + added TRIM floodplains around Bella Coola - then removed coniferous stands >200 yrs.                                                                                                                         | 2008     |
| Grizzly Bear Habitat                   | griz_09dis                  | ILBM           | ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm_data/<br>grizzly_bear_nc and grizzly_scc                                                                                                                                                           | 2009     |
| High Value Fish<br>Habitat (HVFH)      | HVFH                        | Forsite        | 20,000 scale streams with a gradient of <=5% fall on terrain with <=5% slope.                                                                                                                                                                         | 2008     |
| Kimsquit River HVFH                    | Kimsquit                    | ILBM           | ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm_data/<br>Kimsquit_River_cnc                                                                                                                                                                        | 2009     |
| Aquatic Non High<br>Value Fish Habitat | AQ_NHVFH                    | Forsite        | 20,000 scale streams classified into S1-S6 – then any S1-S3 streams not called HVFH. Lake and wetlands from TRIM.                                                                                                                                     | 2008     |
| Important Fisheries<br>Watersheds      | fsw_3rd_2009                | ILMB           | ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm_data/ Forsite compiled 4 separate IFW datasets provided by ILMB Nanimo – two original EBM order datasets plus additional watersheds coming from the amended order (NCMO_IFW_7FN and ISW_FN_Final). | 2009     |
| Site Series Surrogates                 | n/a                         | ILMB           | Assigned to veg file using leading species and site index groups.                                                                                                                                                                                     | 2008     |
| Other Watersheds<br>(Upland Streams)   | fsw_3rd_2009                | ILMB           | 3 <sup>rd</sup> order watersheds. ftp://ftpnan.env.gov.bc.ca/pub/outgoing/dist/Coast%20Implementation/EBM%20WG/Data/watersheds/ These watersheds were used to fill in around the IFW's.                                                               | 2007     |
| Management Guidance                    |                             |                |                                                                                                                                                                                                                                                       |          |
| Recreation Inventory                   | Rec_Inv                     | LRDW           | Inventory describing the significance and sensitivity of the land base from a recreation perspective.                                                                                                                                                 | 2006     |
| VQO's                                  | VQOs                        | MFR            | http://www.for.gov.bc.ca/dni/gar/GAR.htm. VAC attribute added from dataset off of the LRDW.                                                                                                                                                           | 2005     |

| Data Description         | Forsite<br>Coverage<br>Name | Data<br>Source | Description                                                                                                                          | Vintage |
|--------------------------|-----------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|
| Streams (Classified)     | Streams                     | Forsite        | 20,000 scale streams (corporate watershed base) classified into S1-S6 using stream gradient and stream order/magnitude.              | 2008    |
| Lakes Classified         | Lakes                       | Forsite        | 20,000 scale lakes and wetlands (corporate watershed base) classified in to L1-L5 / W1-W5 based on size and proximity to each other. | 2008    |
| Community<br>Watersheds  | CWSs                        | LRDW           | Legal Community Watersheds                                                                                                           | 2008    |
| Ungulate Winter<br>Range | UWR                         | LRDW           | Deer and Mtn Goat winter range habitat areas.<br>http://www.env.gov.bc.ca/wld/frpa/uwr/approved_uwr.html                             | 2007    |
| Wildlife Habitat Areas   | WHAs                        | LRDW           | Legally established WHA's (Grizzly only)                                                                                             | 2007    |

## 2.2 Forest Cover Inventory

The forest cover inventory is a key component to the timber supply review of the TSA. The history of the current forest cover inventory in the Mid Coast TSA can be summarized briefly as follows:

- The inventory data was originally prepared in 1988-1990 from 1977-79 photography and is currently in a Vegetation Resources Inventory (VRI) Forest inventory Planning (FIP) Rollover format. There are several mapsheets of full VRI format data in the NE corner of the TSA (portion of Tweedmuir park).
- A single flat file was obtained from Forest Analysis and Inventory Branch (James Wang) that included only Rank 1 stand information. Attributes were projected to January 1, 2008 using VDYP 6.
- Disturbances from harvesting and fire will be updated in the GIS resultant to March 2008 using data compiled from licensees and RESULTS. Fires from 2001-2007 were provided by the MFR FAIB.
- An inventory audit was carried out in 1994 (published 1995) and indicated that the inventory was statistically reliable for some strategic planning purposes at a broad management unit level.
- No ground sampling (Phase 2 work) has been completed to support adjustments to inventory attributes so no adjustments have been applied.
- Site index adjustments have been developed for regenerating managed stands (Timberline's 2008 SIA project<sup>1</sup>) and were used to develop managed stand yield curves. Existing inventory site indices were used for natural (unmanaged) stand yield curves.

It should be noted that planners and practitioners using the forest inventory at a sub-unit or polygon level have found the attributes quite unreliable. The extra demands of EBM (e.g. Site Series Surrogate status reporting) emphasizes the need for more dependable information. To that end a multi year, multi million dollar project to create a new VRI inventory to replace the current forest cover information was initiated in 2008 but will not be completed in time for inclusion in this analysis. In lieu of access to any better forest information the FIP-based data is employed in this TSR.

## 3.0 Timber Harvesting Land Base

## 3.1 Land Base Definitions

The Productive Forest Land Base (PFLB) is the area of productive forest under crown ownership. This is the land base that contributes to landscape level objectives for biodiversity and non timber resource management. The PFLB excludes non-crown land, probationary community forest agreements (PCFA), non-forest and non-productive areas.

<sup>&</sup>lt;sup>1</sup> Site Index Adjustment Of The Mid Coast Timber Supply Area (Project # BC0108405), January 2009, Timberline Natural Resource Consultants, Victoria, BC

<sup>&</sup>lt;sup>2</sup> Central Coast LRMP Area Vegetation Resources Inventory Strategic Inventory Plan, February 2008. pg 7

The Timber Harvesting Land Base (THLB) is the portion of the management unit where forest licensees under license to the province of BC are expected to harvest timber. The THLB excludes areas that are inoperable or uneconomic for timber harvesting, or are otherwise off-limits to timber harvesting. Operationally, harvesting activity does occur in areas outside the modeled THLB. The THLB is a subset of the PFLB. For modeling purposes, the THLB must be approximated in a GIS format and is described in detail below. Table 3 and Figure 4 / Figure 5 summarize the land base planned for use in the base case harvest forecast.

Table 3. Land base Area Netdown Summary

|                                                    |                    | Base Case               |            |           |
|----------------------------------------------------|--------------------|-------------------------|------------|-----------|
| Land Base Element                                  | Total Area<br>(ha) | Effective*<br>Area (ha) | %<br>Total | %<br>PFLB |
| Total area (Mid Coast TSA Bdy – less ocean)        | 2,994,120          | 2,994,120               |            |           |
| Less:                                              |                    |                         |            |           |
| Private Land, Indian Reserves                      | 14,365             | 14,365                  |            |           |
| TFL's, CFA's, PCFA's, Misc Leases, Etc             | 263,393            | 263,393                 |            |           |
| Timber License's (unreverted)                      | 5,279              | 5,279                   |            |           |
| Total TSA Area                                     | 2,711,083          |                         | 100.0%     |           |
| Non forest / Non-productive forest                 | 1,681,250          | 1,681,250               | 61.6%      |           |
| Non-Commercial Brush                               | 480                | 480                     | 0.4%       |           |
| Existing Roads, Trails and Landings                | 4,937              | 3,521                   | 0.1%       |           |
| Total Productive Forest Land Base** (PFLB)         | 1,024,416          | 1,025,831               | 37.8%      | 100%      |
| Less:                                              |                    |                         |            |           |
| Parks and Ecological Reserves                      | 495,133            | 495,133                 | 18.3%      | 48.3%     |
| Inoperable/Inaccessible                            | 819,219            | 327,229                 | 12.1%      | 31.9%     |
| Environmentally Sensitive Areas (ESA's)            | 261,632            | 28,977                  | 1.1%       | 2.8%      |
| Non-Merchantable or Problem Forest Types           | 196,865            | 33                      | 0.0%       | 0.0%      |
| Low Productivity Sites                             | 177,662            | 17,819                  | 0.7%       | 1.7%      |
| Grizzly Wildlife Habitat Areas (WHA's)             | 13,661             | 3,755                   | 0.1%       | 0.4%      |
| Mountain Goat Winter Range                         | 29,985             | 65                      | 0.0%       | 0.0%      |
| FRPA Riparian (not including S6's)                 | 17,433             | 6,240                   | 0.2%       | 0.6%      |
| Recreation Values                                  | 10,470             | 3,466                   | 0.1%       | 0.3%      |
| EBM – High Valve Fish Habitat (Obj. 9)             | 5,782              | 1,603                   | 0.1%       | 0.2%      |
| EBM – Non High Value Aquatic Habitat (Obj. 10)     |                    | 2,094                   | 0.1%       | 0.2%      |
| EBM – HVFH Kimsquit River (Obj. 9)                 | 5,693              | 1,150                   | 0.0%       | 0.1%      |
| EBM – Active Fluvial Units (Obj. 13)               | 1,133              | 264                     | 0.0%       | 0.0%      |
| EBM – Grizzly Bear Habitat (Obj. 17)               | 42,420             | 2,662                   | 0.1%       | 0.3%      |
| Spatial Timber Harvesting Land Base (ha)           |                    | 135,343                 | 5.0%       | 13.2%     |
| Non Spatial Netdowns Applied to Each THLB Polygon: |                    |                         | 0          |           |
| FRPA Riparian – S6's = 0.3%                        |                    | 406                     | 0.0%       | 0.0%      |
| EBM – Arch/FN (Obj. 4-7) = 1.3%                    |                    | 1,759                   | 0.1%       | 0.2%      |
| EBM – Red and Blue (Obj. 15) = 3.0%                |                    | 4,060                   | 0.1%       | 0.4%      |
| EBM – Stand Level Retention (Obj. 16) = 4.4%       |                    | 5,955                   | 0.2%       | 0.6%      |
| Effective Timber Harvesting Land Base (ha)         |                    | 123,162                 | 4.5%       | 12.0%     |
| Future Reductions:                                 |                    | •                       |            |           |
| Future roads, trails and landings                  |                    | -2,713                  | 0.1%       | 0.3%      |
| Future Gains:                                      |                    |                         |            |           |
| TL Reversions                                      |                    | +5,279                  | 0.2%       | 0.5%      |
| Long Term Timber Harvesting Land Base (ha)         |                    | 125,728                 | 4.6%       | 12.3%     |

Effective netdown area represents the area that was actually removed as a result of a given factor. Removals are applied in the order shown above, thus areas removed lower on the list do not contain areas that overlap with factors that occur higher on the list. For example, the parks netdown does not include any non forested area.

\*\* Productive forest in this context denotes the forest area that contributes to forest management objectives, such as landscape-level biodiversity, wildlife habitat and visual quality. It does

8 May 10, 2010

not include alpine forest or Non productive areas with tree species.

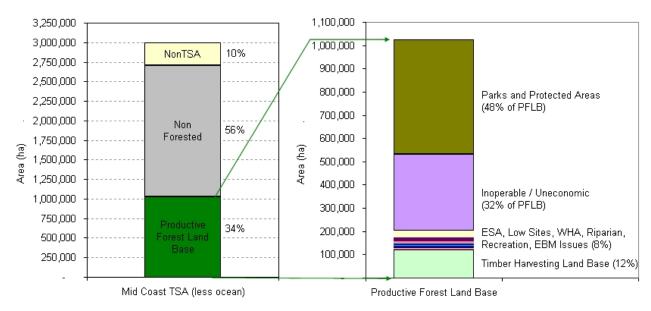



Figure 4. Mid Coast Land Base Area Summary

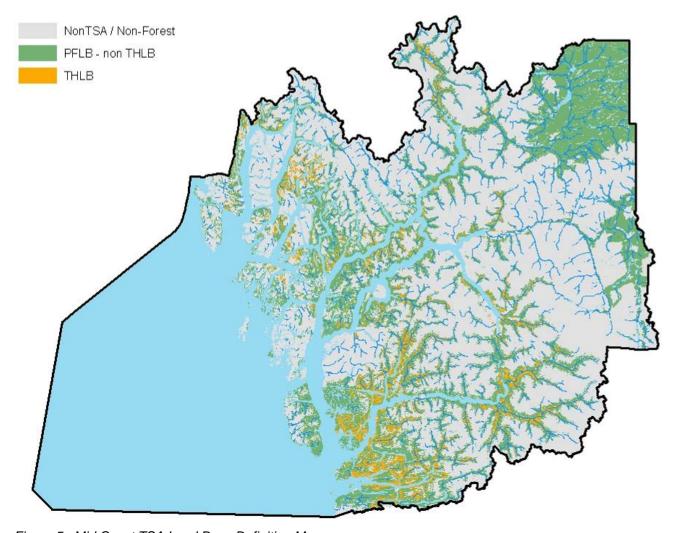



Figure 5. Mid Coast TSA Land Base Definition Map

## 3.2 Exclusions from the Productive Forest Land Base (Spatial)

### 3.2.1 Ownership classes not part of the TSA

The area of the Mid Coast Timber Supply Area is divided into ownership classes that describe the nature of ownership of a particular parcel of land. For forest management in the Mid Coast TSA, only those lands that are under provincial crown ownership will contribute to forest management objectives, like landscape level biodiversity.

Table 4 describes the various ownership codes in the Mid Coast TSA, and their contribution to the Productive Forest Land Base, the Timber Harvesting Land base, or both. Parks and protected areas are described in more detail in section 3.3.1.

Table 4. Ownership codes and application in TSR3

| Ownership Code Description                     | Percent<br>Contribution<br>to PFLB | Percent<br>Contribution<br>to THLB | Total<br>area (ha) | Effective<br>Netdown<br>Area (ha) |
|------------------------------------------------|------------------------------------|------------------------------------|--------------------|-----------------------------------|
| Community Forest Agreement (CFA)               | 0%                                 | 0%                                 | 169,160            | 169,160                           |
| Indian Reserve                                 | 0%                                 | 0%                                 | 5,059              | 5,059                             |
| Miscellaneous Reserve                          | 0%                                 | 0%                                 | 1,434              | 1,434                             |
| Private                                        | 0%                                 | 0%                                 | 9,305              | 9,305                             |
| Tree Farm License (TFL)                        | 0%                                 | 0%                                 | 86,280             | 86,280                            |
| Timber License's reverting to CFA (TL/CFA)     | 0%                                 | 0%                                 | 6,451              | 6,451                             |
| Use, recreation enjoyment of the public (UREP) | 0%                                 | 0%                                 | 68                 | 68                                |
| Total                                          |                                    |                                    | 277,758            | 277,757                           |

Note: More detail is provided on park areas in Table 8.

## 3.2.2 Non-forest, non-productive and non-typed

All land classified as non-forest, non-productive (lakes, swamps, rock, alpine, *etc.*), or non-typed in the forest cover files were excluded from the timber harvesting land base. The non-forest and non-productive areas used in the netdown process are listed in Table 5.

Table 5. Non-forest and non-productive area

| Description          | Percent<br>Reduction | Total area<br>(ha) | Effective Netdown<br>Area (ha) |
|----------------------|----------------------|--------------------|--------------------------------|
| Alpine               | 100%                 | 1,074,702          | 1,074,702                      |
| Alpine forest        | 100%                 | 294,099            | 294,099                        |
| Clearing             | 100%                 | 88                 | 88                             |
| Clay bank            | 100%                 | 341                | 341                            |
| Gravel bar           | 100%                 | 403                | 403                            |
| Gravel pit           | 100%                 | 4                  | 4                              |
| Lake                 | 100%                 | 72,964             | 72,964                         |
| Meadow               | 100%                 | 52                 | 52                             |
| Mud flat             | 100%                 | 185                | 185                            |
| Non-productive       | 100%                 | 167,372            | 167,372                        |
| Non-productive brush | 100%                 | 11,298             | 11,298                         |
| Non-productive burn  | 100%                 | 1,663              | 1,663                          |
| No typing available  | 100%                 | 35,464             | 35,464                         |
| Open range           | 100%                 | 1                  | 1                              |
| Rock                 | 100%                 | 6,085              | 6,085                          |
| River                | 100%                 | 8,482              | 8,482                          |
| Swamp (muskeg)       | 100%                 | 7,503              | 7,503                          |
| Tidal flat           | 100%                 | 138                | 138                            |
| Urban                | 100%                 | 405                | 405                            |
| Total                | -                    | 1,681,250          | 1,681,250                      |

#### 3.2.3 Non-commercial cover

Non-commercial cover is productive forest land that is otherwise occupied by non-commercial tree or shrub species. This area of land does not currently grow commercial tree species, and is not expected to do so without intervention. This area was therefore excluded from the Productive Forest Land Base.

Table 6. Non-commercial cover

| Description                         | Percent<br>Reduction | Total area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|-------------------------------------|----------------------|--------------------|-----------------------------------|
| Non-Commercial (NF Desc=NCBr or NC) | 100%                 | 480                | 480                               |

### 3.2.4 Roads, trails, and landings

Quantifying the area that is, and will be, disturbed by roads, trails, landings (RTLs) and other access features in the TSA is an important part of determining the THLB. Areas that were expected to remain non-productive were removed from the working land base as outlined below.

#### 3.2.4.1 Existing classified roads

Classified roads are those roads identified in the forest cover inventory. These roads are frequently large roads or highways with a wide right-of-way and are netted out in Table 5.

#### 3.2.4.2 Existing unclassified roads, trails, and landings

Roads not represented in the forest cover data are considered unclassified. Roads and trails are tracked as line features in separate road files. A consolidated dataset was compiled by Forsite in August 2008 using data from licensees, TRIM, MFR tenures, and a woodshed analysis project completed by Timberline in 2000. Roads were flagged as either existing or proposed with a road type of either mainline or spur. The widths associated with these road features were estimated by members of the Mid Coast TSR technical committee and applied as buffers to the existing roads (Table 7). These areas were assumed to include landings, pullouts, and unmapped trails – and were removed spatially from the timber harvesting land base.

Table 7. Access feature classification

| Road Type | Unproductive Road<br>Width (m) | Total Area (ha) | Effective Netdown<br>Area (ha) |
|-----------|--------------------------------|-----------------|--------------------------------|
| Main      | 15 m                           | 4.937           | 3.521                          |
| Spur      | 11 m                           | 4,937           | 3,521                          |

Note: Overlap between these features and non-forested areas exist but no double counting occurred during netdowns.

#### 3.2.4.3 Future roads, trails and landings

Deductions for future roads are necessary to account for the unproductive area created as new roads, trails and landings are built. The first time conventional logging occurs in an unroaded area of the TSA, all of the timber volume in that stand is captured. Any subsequent entries will harvest less volume, recognizing that there is now an unproductive area that would exist as roads, trails and landings.

FRPA limits the impact of permanent access structures to 7.0% and this value is consistent with commitments made in licensee Forest Stewardship Plans. For the purpose of this analysis, the 7% impact associated with future permanent access structures will be applied to the following area:

- Unlogged THLB (natural stand AU's), that are
- >250 meters from existing roads, and
- planned for conventional logging systems (not helicopter logging).

It is assumed that the area within 250 m can currently be accessed from the existing roads and all previously logged areas will not need the netdown applied.

Deductions for future roads, trails and landings were applied as a volume reduction to the yield tables of all future managed stand analysis units. The THLB area meeting the criteria described above (38,755 ha) was multiplied by 7.0% to get an effective area reduction (2,713 ha). This area was then calculated as percentage of the total area on the future managed stand yield curves (106,283 ha) and implemented as a volume reduction (2.5%) on these curves.

## 3.3 Exclusions from the Timber Harvesting Land Base

#### 3.3.1 Parks and Protected Areas

Provincial parks and other protected areas in the Mid Coast TSA are excluded from the THLB but can contribute to non-timber objectives, meaning that they remain in the productive forest land base (PFLB) Table 8 summarizes the existing parks, protected areas, and conservancies in the TSA.

Table 8. Parks and Ecological Reserves in Mid Coast TSA

| Date of<br>Establishment | Conservancy or BMTA Name                        | Productive<br>Forest Area<br>(ha) | Effective<br>Netdown<br>Area (ha) |
|--------------------------|-------------------------------------------------|-----------------------------------|-----------------------------------|
|                          | Codville Lagoon Marine Park                     | 384                               | 384                               |
| Before June 1,           | Entiako Park                                    | 2                                 | 2                                 |
| 2000                     | Hakai Conservation Study Area                   | 11,281                            | 11,281                            |
|                          | Huchsduwachsdu Nuyem Jees / Kitlope Heritage    | 2                                 | 2                                 |
|                          | Conservancy Penrose Island Park                 | 922                               | 922                               |
|                          | Sir Alexander Mackenzie Park                    | 922                               | 922<br>5                          |
|                          | Tweedsmuir Park (North)                         | 148                               | 148                               |
|                          | Tweedsmuir Park (North) Tweedsmuir Park (South) | 264,232                           | 264,232                           |
|                          | Calvert Island Conservancy                      | 11,695                            | 11,695                            |
| Bill28 -                 | Fiordland Conservancy                           | 11,192                            | 11,192                            |
| 03/05/2006               | Kitasoo Spirit Bear Conservancy                 | 2,569                             | 2,569                             |
|                          | Koeye Conservancy                               | 15                                | 15                                |
|                          | Tsa-latl/Smokehouse Conservancy                 | 13,114                            | 13,114                            |
|                          | Cape Caution-Blunden Bay Conservancy            | 9                                 | 9                                 |
| Bill24 -                 | Carter Bay Conservancy                          | 292                               | 292                               |
| 03/05/2007               | Clyak Estuary Conservancy                       | 166                               | 166                               |
|                          | Cranstown Point Conservancy                     | 77                                | 77                                |
|                          | Goose Bay Conservancy                           | 937                               | 937                               |
|                          | Kilbella Estuary Conservancy                    | 81                                | 81                                |
|                          | Lady Douglas - Don Peninsula Conservancy        | 1,910                             | 1,910                             |
|                          | Lockhart - Gordon Conservancy                   | 14,970                            | 14,970                            |
|                          | Machmell Conservancy                            | 1,364                             | 1,364                             |
|                          | Nekite Estuary Conservancy                      | 256                               | 256                               |
|                          | Outer Central Coast Islands Conservancy         | 5,796                             | 5,796                             |
|                          | Owikeno Conservancy                             | 22,301                            | 22,301                            |
|                          | Penrose-Ripon Conservancy                       | 2,153                             | 2,153                             |
|                          | Sheemahant Conservancy                          | 610                               | 610                               |
|                          | Ugwiwey/Cape Caution Conservancy                | 3,480                             | 3,480                             |
|                          | Bella Coola Conservancy                         | 4                                 | 4                                 |
| Bill38/r437              | Burnt Bridge Creek Conservancy                  | 598                               | 598                               |
| 26/06/2008               | Cascade-Sutslem Conservancy                     | 19,387                            | 19,387                            |
|                          | Clayton Falls Conservancy                       | 650                               | 650                               |
|                          | Codville Extension Conservancy                  | 764                               | 764                               |
|                          | Dean River Conservancy                          | 17,514                            | 17,514                            |
|                          | Dean River Corridor Conservancy                 | 2,700                             | 2,700                             |
|                          | Ellerslie-Roscoe Conservancy                    | 10,867                            | 10,867                            |
|                          | Ellerslie-Roscoe Conservancy (Roscoa)           | 12,957                            | 12,957                            |

| Date of<br>Establishment | Conservancy or BMTA Name                | Productive<br>Forest Area<br>(ha) | Effective<br>Netdown<br>Area (ha) |
|--------------------------|-----------------------------------------|-----------------------------------|-----------------------------------|
| (cont.)                  | Hot Springs - No Name Creek Conservancy | 3,438                             | 3,438                             |
|                          | Jump Across Conservancy                 | 7,255                             | 7,255                             |
| Bill38/r437              | Kimsquit Estuary Conservancy            | 531                               | 531                               |
| 26/06/2008               | Kwatna Estuary Conservancy              | 81                                | 81                                |
|                          | Nooseseck Conservancy                   | 25                                | 25                                |
|                          | Namu Conservancy                        | 27                                | 27                                |
|                          | Restoration Bay Conservancy             | 776                               | 776                               |
|                          | Thorsen Creek Conservancy               | 2,512                             | 2,512                             |
|                          | Troup Passage Conservancy               | 1,512                             | 1,512                             |
|                          | Upper Kimsquit River Conservancy        | 1,989                             | 1,989                             |
|                          | Ape Lake                                | 757                               | 757                               |
| BMTAs                    | Barer Creek                             | 1,110                             | 1,110                             |
| OIC 002-2009             | Bentinck Estuaries                      | 35                                | 35                                |
| 01/09/09                 | Fish Egg                                | 11,460                            | 11,460                            |
|                          | Inland Cape Caution                     | 9,302                             | 9,302                             |
|                          | King                                    | 11,710                            | 11,710                            |
|                          | Kunsoot River                           | 979                               | 979                               |
|                          | Nekite Estuary West                     | 196                               | 196                               |
|                          | South Bentinck                          | 6,033                             | 6,033                             |
|                          | Total                                   | 495,133                           | 495,133                           |

#### 3.3.2 Inoperable or Inaccessible Areas

Inoperable areas are areas that are not available for timber harvesting because they are not economically viable to access and harvest. In response to concerns expressed by the Chief Foresters in his TSR2 rationale, a new operability study was conducted as part of this TSR (*Economic Operability Assessment for the Mid Coast TSA*, Forsite, March 2009). The study used the following general approach:

- A road network was developed to show the extent of potential access throughout the TSA, and included both existing and planned/potential roads. This road dataset is a coarse approximation of what is likely to occur in the future and was used to assign harvest systems. Areas within 250 m of roads were considered conventional harvest, while areas beyond that but limited to 2km away were considered helicopter harvest. Helicopter harvest was also designated up to 2km from potential water drop locations. Areas without a harvest system were immediately considered inoperable (20,080 ha). Those with a harvest system were assessed for economic viability.
- Stands with no potential for harvest in the future were removed from eligibility (Non TSA ownership, parks/designated areas, very low productivity sites, highly environmentally sensitive areas, major riparian areas / floodplains, mountain goat habitat areas, important grizzly habitat areas, etc). An economic subset of these areas was ultimately put back into the operable land base so that TSR netdowns and sensitivities could explore the impacts of these factors.
- Costs were assigned to each stand for planning, logging, barging, scaling, and silviculture using costs provided by licensees and the coastal appraisal manual. See the full project report for more detail.
- Values were assigned to each stand using 10 year average market prices for each species and grade.
   Grade distributions were determined using historical TSA scaling data for each species and then these species specific grade distributions were applied to each stand in the forest inventory.
- A net value (before road costs) was determined for each stand, and then these values and a full road
  network (existing and proposed) was fed into a model (Patchworks) to allocate harvesting and road use
  across the land base for 200 years. Road use triggered any required building costs, maintenance costs,
  and hauling costs associated with harvesting a specific set of stands. The sum of the stand net values
  less road related costs in each period provided average net revenue in each period.

- The modeling objective was to find the largest possible land base that could generate a reasonable economic return to the crown over time. Cut block blending or the ability to harvest positive and negative value blocks within each period was allowed as long as the net return after all costs were considered was \$6.33/m³ in every 5 year period. The \$6.33/m³ target is based on the average stumpage paid in the TSA over the last 10 years (\$9.08/m³ not including BCTS) less the current EBM allowance of \$2.75/m³. This financial objective limited the amount of negative value stands harvested in each period to a reasonable level.
- Any stands harvested by the model during the 200 years planning horizon were considered to be
  operable. Previously logged blocks in the TSA were considered operable only when they were logged
  by the model. This left over 10,499 ha of previously logged stands outside of the operability land base.

The size of the area considered inoperable is shown in Table 9. For more detail on how the operable area was developed, refer to the full report cited above.

Table 9. Inoperable areas

| Description | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|-------------|----------------------|-------------------|-----------------------------------|
| Inoperable  | 100%                 | 819,219           | 327,229                           |

The Ministry of Forestry District has indicated some concerns about the operability in the back of the Owikeno Watershed but licensees still see opportunities in the area. This area will be modeled with no restrictions but its contribution to the base case flow will be reported out and a sensitivity analysis will be preformed.

#### 3.3.3 ESAs and Unstable Terrain

Environmentally sensitive sites and areas of significant value for other resource uses have been delineated within the forest cover inventory as Environmentally Sensitive Areas (ESA's). ESA's are broad classifications that indicate sensitivity for unstable soils (E1s), forest regeneration problems (E1p), snow avalanche risk (E1a), and high water values (E1h). Where terrain stability mapping is available, it is often used in place of ESA soils designations, but there was none available for use in this analysis. Table 10 summarizes the netdown areas attributed to ESA's. Environmentally sensitive area reductions were established by MFR for the 1999 timber supply analysis. The percentages reflect sites sensitivity to forest management, value for other resources, and current management practices.

Table 10. ESA netdown areas

| ESA Type | Description                              | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|----------|------------------------------------------|----------------------|-------------------|-----------------------------------|
| ESA1 a   | High Avalanche Sensitivity               | 100%                 | 4,397             | 592                               |
| ESA1 p   | High Regeneration Sensitivity            | 100%                 | 101,771           | 6,562                             |
| ESA1 s   | High Soil Sensitivity / Unstable Terrain | 90%                  | 139,556           | 18,450                            |
| ESA2 s   | Mod Soil Sensitivity / Unstable Terrain  | 40%                  | 15,454            | 3,372                             |
| Total    |                                          |                      | 261,177           | 28,977                            |

Note: The total productive area of ESA1 soils (TSA forested land) was 155,062 ha and the total for ESA2 soils was 38,634 ha.

These netdowns were implemented spatially by randomly selecting ESA polygons from the TSA's forested land base until the correct percentage was achieved. The selected polygons were then 100% removed from the THLB. Areas with previous logging history were not removed as part of this netdown.

#### 3.3.4 Non-Merchantable or Problem Forest Types

Non-merchantable forest types are stands that contain tree species not currently utilized in the TSA, or timber of low quality, small size and/or low volume. Non-merchantable types are entirely excluded from the timber harvesting land base as shown in Table 11.

Table 11. Non-merchantable forest types

| PFT<br>Type | Description *                          | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|-------------|----------------------------------------|----------------------|-------------------|-----------------------------------|
| Pine        | All pine leading stands (PI / Pw / Py) | 100%                 | 177,954           | 25                                |
| Larch       | All larch leading stands               | 100%                 | 8                 | 0                                 |
| Decid.      | All deciduous leading stands           | 100%                 | 18,843            | 8                                 |
|             | Total                                  | 196,805              | 33                |                                   |

<sup>\*</sup> Sites with a previous logging history were retained in the land base.

The net impact of this netdown is low because these stands were typically deemed uneconomic during the operability assessment because they provided little to no economic value (revenue) when harvested. Alder leading stands may be put back into the THLB during a sensitivity analysis to determine alder volume availability.

### 3.3.5 Low Productivity Sites

Sites with low growing potential are areas that are not expected to contribute to the THLB because they take too long to produce a commercial crop of trees. The list of exclusion criteria can be found in Table 12. These definitions were derived based on a review of past licensee performance in various site index categories. Limited logging occurred in stands with site indices below the thresholds shown here but it was not significant enough to warrant inclusion of all stands with that site index in the THLB.

Table 12. Low site netdowns

| Leading<br>Species | Description * Percent Reduction               |      | Prod Area<br>(ha) | Effective<br>Netdown<br>Area (ha) |
|--------------------|-----------------------------------------------|------|-------------------|-----------------------------------|
| Fd                 | 150 yr old Fd stands <350 m3/ha or SI<17 m    | 100% | 3,982             | 380                               |
| Cw/Yc              | 150 yr old Cw stands <300 m3/ha or SI<12 m    | 100% | 105,696           | 16,304                            |
| Hw/Ba              | 150 yr old Hw/Ba stands <350 m3/ha or SI<11 m | 100% | 47,192            | 1,128                             |
| Sx                 | 150 yr old Sx stands <350 m3/ha or SI <10 m   | 100% | 20,792            | 7                                 |
| Total              |                                               | •    | 177,662           | 17,819                            |

<sup>\*</sup> Sites with a previous logging history were not removed by this netdown.

A portion of these stands were already removed during the economic operability assessment as they were not economically viable to harvest. Low productivity stands incurred higher costs because they were assumed to have smaller piece sizes and they had less volume per ha over which to amortize fixed costs such as logging system setup, road building, and silviculture costs.

Only a small proportion of the total 'low site' area is netted down here because the remainder of the area was already removed by other netdowns such as parks, operability, and ESA's.

#### 3.3.6 Cultural Heritage Resource Deductions

The *Heritage Conservation Act* provides for the protection of British Columbia's archaeological sites predating 1846. In accordance with the *Act* (Section 13(2)), archaeological sites may not be damaged, excavated or altered without a permit issued by the Minister or designate. The BC Provincial Heritage Register database is the basis for records on archaeological sites. The sites contained in this database were obtained and reviewed by Mid Coast technical committee members from the Heiltsuk and Gwa'sala'Nakwaxda First Nations. The mapped areas were deemed inadequate to represent the issue as several know sites were missing and there will be further impacts from currently unknown sites. Considering the effort required to improve the dataset and the sensitivity of this information to FN's, it was decided to include this issue with the non spatial netdown approach taken to address the First Nation EBM issues discussed later in this document. Refer to section 8.5 for more detail. Uncertainty around this issue will be addressed in the THLB size sensitivity analysis.

#### 3.3.7 Karst

In March 2007, a GAR order established specific elements of karst systems as "resource features" in the North Island - Central Coast Forest District and this designation results in protection under FRPA's Forest Planning and Practices Regulations. The elements named in the GAR order are:

- Karst caves
- Important features and elements within high and very high vulnerability karst
- Significant surface karst features

Mapped inventory data reflecting karst likelihood (presence) and development intensity (quality) was reviewed for the Mid Coast TSA. This mapping does not directly identify karst vulnerability it was assumed that areas with a high likelihood of occurrence combined with a high quality rating would meet this definition. There was almost no area ranked as high (primary) likelihood in the TSA. Discussions within the MFR staff and licensees confirmed that karst features are rare in the TSA and any occurrences can be effectively dealt with using stand level retention strategies. Thus, no netdown was specifically implemented for karst.

#### 3.3.8 Wildlife Habitat Areas (WHA's)

The provincial *Identified Wildlife Management Strategy* provides for the creation of Wildlife Habitat Areas (WHA) within the TSA, to protect key habitat features of listed wildlife species. Legal WHA's exist in the TSA for Grizzly Bear while Draft WHA's have been developed for Sandhill Crane, Tail Frog, Northern Goshawk, and Marbled Murrelets. Only the legal Grizzly Bear WHA's will be netted out of the land base in the Base Case as the others are not yet finalized. Proposed WHA's may be evaluated using sensitivity analysis and can also be addressed at the time of determination by considering their contribution to the target 1% impact on the THLB as defined in the Identified Wildlife Management Strategy.

The FRPA Section 7 Notice indicates that 16,000 hectares of grizzly bear habitat are to be maintained in the Mid Coast TSA of which no more than 6,046 ha³ can be within the TSR2 THLB. The established grizzly WHA's were designed to be consistent with this requirement. Since grizzly bear habitat was factored into the TSR1/TSR2 analysis (and considered as pre-FPC practice) the impact of this requirement is deemed to be extra to the IWMS 1% limit.

| Tahla 13  | Reductions | for established | o'AHW ha |
|-----------|------------|-----------------|----------|
| Table 15. | REGUCTIONS | TOT ESTADIISTIE | UVVDAS   |

| Description        | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|--------------------|----------------------|-------------------|-----------------------------------|
| Grizzly Bear WHA's | 100%                 | 13,661            | 3,755                             |

#### 3.3.9 Mountain Goat Winter Range

In 2007, a Government Action Regulation (GAR - #U-5-004)) order was established that identifies habitat areas and prevents harvest from occurring in 90% of the habitat area in each landscape unit. This will be modeled by ensuring 90% of the habitat in each LU is spatially reserved from harvest.

May 10, 2010 16

-

The total area indicated in the Notice equals the area mapped by MELP in 1988 as critical forest habitat for grizzly bears. The maximum impact on THLB indicated in the Notice is equal to the area of THLB reported in the TSR2 AAC Rationale. However, grizzly bear areas were factored into the analysis as cover constraints, not reserves, so the equivalent impact on the TSR2 THLB is less than 10,000 hectares. Calculations based on TSR2 LTHL, estimate an equivalent THLB impact of 6,046 hectares (3.2% of base case). WHAs 5-120 through 5-541 were established under this account.

Table 14. Reductions for Mountain Goat

| Description                | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|----------------------------|----------------------|-------------------|-----------------------------------|
| Mountain Goat Winter Range | 90%                  | 29,985            | 65                                |

Note: The total productive area (TSA forested land) was 33,318 ha.

The area to be reserved (90% or 29,985 ha) was selected using any constrained land base first and then any unconstrained land base starting with the lowest site indexes. Each LU was evaluated independently. The vast majority of the Mountain Goat area overlapped with inoperable areas, parks, or ESA's. There were only 4 LU's where the unconstrained land base did not satisfy the minimum of 90% of the required area: Johnston (35 ha), Bella Coola (21 ha), Ellerslie (8 ha), and Sheep Passage (3 ha). The overall Mountain Goat Winter Range protection reaches 32,555 ha (98%) at the TSA level.

#### 3.3.10 **FRPA Riparian Reserve and Management Zones**

Riparian reserve areas around lakes, wetlands, and streams in the Mid Coast TSA are excluded from the timber harvesting land base. Management practices within riparian management zones also resulted in areas excluded from the timber harvesting land base. Based on typical licensee FSP commitments, a portion of the volume/area of these zones was retained as shown in the tables below. In the analysis, this was represented by an additional buffer width that was 100% excluded. When the reserve zone and representative portion of the management zone were added together, an "effective" buffer width was defined and then ultimately used in the model as a 100% spatial netdown. See Table 16 for a description of the netdown assumptions for lakes and wetlands, and Table 15 for a description of stream netdown assumptions.

#### 3.3.10.1 Streams and Rivers

Stream classifications were assigned to all TRIM stream reaches using a classification algorithm designed to be consistent with the FRPA definitions. Stream widths were inferred from stream order and magnitude (number of reaches above). Buffers were applied to both sides of mapped streams using 'effective' widths as per Table 15 and then removed from the timber harvesting land base. Basal area retention in management zones is reflective of typical management practices in the TSA.

Table 15. Land base reductions for streams

| Stream Class    | Reserve<br>Zone<br>(RRZ)<br>(m) | Mgmt Zone<br>(RMZ)(m) | RMZ Basal <sup>(1)</sup><br>Area Retention<br>(%) | Effective <sup>(2)</sup><br>Riparian Rsv<br>Width (m) | Prod <sup>(3)</sup><br>Area<br>(ha) | Effective<br>Netdown<br>Area (ha) |
|-----------------|---------------------------------|-----------------------|---------------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------------------|
| S1-A (>100 m)   | 0                               | 100                   | 50                                                | 50                                                    | 4,417                               | 1,729                             |
| S1-B (20-100 m) | 50                              | 20                    | 50                                                | 60                                                    | 7,717                               | 1,729                             |
| S2              | 30                              | 20                    | 50                                                | 40                                                    | 3,997                               | 1,687                             |
| S3              | 20                              | 20                    | 50                                                | 30                                                    | 3,668                               | 1,207                             |
| S4              | 0                               | 30                    | 25                                                | 7.5                                                   | 2,894                               | 905                               |
| S5              | 0                               | 30                    | 15                                                | 4.5                                                   | 826                                 | 224                               |
| S6              | 0                               | 20                    | 5                                                 | 1                                                     | -                                   | ı                                 |
| Total           |                                 |                       |                                                   |                                                       | 15,803                              | 5,752                             |

Only buffered S1-S5 streams were removed spatially. The small buffers on S6 streams were used to calculate a non-spatial retention percentage for each polygon and then this was tracked in Patchworks. These areas are able to contribute toward non timber objectives but did not contribute toward harvest volumes/areas.

17 May 10, 2010

Based on licensee operational practices as per approved FSPs.

Effective riparian rsv width = RRZ + (RMZ \* (basal area retention / 100)). This width is applied to both sides of the stream. This area excludes protected and conservancy areas (parks/conservancy and designated areas).

#### 3.3.10.2 Lakes and Wetlands

Lake and wetland classifications were assigned to all TRIM water polygons consistent with the logic in the Riparian Management Guidebook (MFR 1997). Buffers were created adjacent to mapped lakes and wetlands using 'effective' widths as per Table 16 and then removed from the timber harvesting land base.

| Tahla 16  | I and hace | raductions         | for lakes | and wetlands |
|-----------|------------|--------------------|-----------|--------------|
| Table 10. | Lailu base | <i>l</i> eductions | iui ianes | anu wenanus  |

| Lake/Wetland<br>Class | Reserve<br>Zone<br>(RRZ) (m) | Mgmt<br>Zone<br>(RMZ) (m) | RMZ Basal <sup>(4)</sup> Area Retention (%) | Effective <sup>(5)</sup><br>Riparian Rsv<br>Width (m) | Prod <sup>(6)</sup><br>Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|-----------------------|------------------------------|---------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------------------|
| L1-A (>1000 ha)       | 0                            | 0                         | 0                                           | 0                                                     | 973                                 | 288                               |
| L1-B (5-1000 ha)      | 10                           | 40                        | 0                                           | 10                                                    | 913                                 | 200                               |
| L2                    | 10                           | 20                        | 25                                          | 15                                                    | -                                   | -                                 |
| L3                    | 0                            | 30                        | 25                                          | 7.5                                                   | 167                                 | 61                                |
| L4                    | 0                            | 30                        | 25                                          | 7.5                                                   | -                                   | -                                 |
| Total                 |                              |                           |                                             |                                                       | 1,140                               | 349                               |
| W1 (> 5ha)            | 10                           | 40                        | 25                                          | 20                                                    | 115                                 | 21                                |
| W2                    | 10                           | 20                        | 25                                          | 15                                                    | -                                   |                                   |
| W3                    | 0                            | 30                        | 25                                          | 7.5                                                   | 175                                 | 66                                |
| W4                    | 0                            | 30                        | 25                                          | 7.5                                                   | -                                   |                                   |
| W5                    | 10                           | 40                        | 25                                          | 20                                                    | 200                                 | 52                                |
| Total                 |                              |                           |                                             |                                                       | 490                                 | 139                               |

<sup>(4)</sup> Based on licensee operational practices as per approved FSPs.

#### 3.3.11 Recreation Features

Recreation features are features on the land base that are important to public and commercial recreation activities. These can include wildlife viewing areas, camp sites, sheltered moorage areas, etc and can sometime result in the exclusion of harvest activities.

Using the Recreation Features Inventory (RFI) dataset for the Mid Coast TSA, high value areas were identified. Polygons coded with Significance/Sensitivity ratings of VH-H, H-H, VH-M, H-M, M-H were selected for netdown considerations. After a review of these areas, it was determined that only a subset (50%) of the areas falling outside constraining VQO polygons (Preservation, Retention, Partial Retention) should be removed as netdowns. These areas represented things like grizzly bear viewing areas in river valleys and a 100% netdown was considered excessive. Licensee's operational experience in the TSA is that recreational values can be accommodated through management and rarely result in land base netdowns.

Table 17. Recreation netdowns

| Recreation inventory polygons outside of P, R, and PR VQO's with the following Significance - Sensitivity ratings: | Prod Area<br>(ha) | 50% Random<br>Selected Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|--------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|-----------------------------------|
| VH - H                                                                                                             | 472               | 209                                 | 90                                |
| H-H                                                                                                                | 8,914             | 4,423                               | 1,364                             |
| VH - M                                                                                                             | 248               | 121                                 | 8                                 |
| H - M                                                                                                              | 11,284            | 5,717                               | 2,003                             |
| M - H                                                                                                              | 1                 | -                                   | -                                 |
| Total                                                                                                              | 20,920            | 10,470 (50%)                        | 3,466                             |

The 50% netdown was turned into a spatial 100% netdown (10,470 ha) by randomly selecting resultant polygons until half of the designated productive area was selected. Then only the area falling outside of previous netdowns was counted toward the effective netdown area. A significant portion of the effective netdown area had past logging in it but it was still removed from the landbase.

Effective riparian reserve width = reserve zone + (management zone \* (basal area retention / 100)).

This area excludes protected and conservancy areas (parks/conservancy and designated areas).

#### 3.3.12 EBM Riparian Management

EBM requirements for High Value Fish Habitat, Aquatic Non High Value Fish Habitat, Active Fluvial Units (Floodplains), and Forested Swamps have the potential to result in additional land base netdowns and are discussed below. EBM requirements for Upland Streams and Important Fisheries Watersheds are addressed using forest cover constraints and are discussed in sections 8.5.6 and 8.5.10.

For the purpose of defining reserve zones, the following tree heights were used:

Outer Coast: 30 mInner Coast: 40 m

Both EBM Orders<sup>4</sup> also offer the potential to use alternative riparian reserve strategies with the implementation of adaptive management, information sharing with FN's, and environmental monitoring – but the default EBM assumptions have been assumed for the base case.

#### 3.3.12.1 High Value Fish Habitat (EBM Obj 9)

High Value Fish Habitat is defined as "critical spawning and rearing areas for anadromous and nonanadromous fish". This occurs in a subset of streams and portions of the ocean shoreline.

#### For streams:

HVFH was spatially identified using 1:20000 scale streams with a gradient of <= 5% on terrain with <=5% slope and under 900 m in elevation. These criteria are meant to capture the vast majority of alluvial streams in the TSA based on the direction that all alluvial streams should be treated as HVFH unless proven otherwise in the field $^5$ . The link between 5% gradient streams and alluvial streams is drawn from work completed by Glynnis Horel, P. Eng. $^6$ . The inclusion of the terrain constraint was intended to eliminate sharply incised draws that are unlikely to be alluvial in nature. A buffer of 45m (30 m x 1.5) on the outer coast and 60 m (40 m x 1.5) on the inner coast was then applied to both side of the streams and the resulting area was fully reserved from harvest.

The Central North Coast Order (2009) also defines as high value fish habitat a reserve zone of 150 m on each side of the natural boundary for the lower portion of the Kimsquit River (Schedule 7). The buffer polygon was obtained from the Integrated Land Management Bureau webpage under the Coast Land Use Decision Implementation section<sup>7</sup>. This polygon has a total area of 1,133 ha and resulted in an effective netdown of 264 ha. The South Central Coast Order (2009) also defines as HVFH the lower portion of the Klinaklini River and Viner Creek but these are outside the boundaries of the Mid Coast TSA.

#### For oceans:

Key spawning habitat was identified on nautical charts using symbology indicating a high correlation with the occurrence of high value fish habitat (shallow water depth, soft seabed). These portions of the shoreline were then captured and buffered in the same manner as HVFH streams.

Table 18. Reductions for HVFH

| Description                       | Percent<br>Reduction | Prod Area (ha)<br>(Incremental to Other Riparian) | Effective Netdown<br>Area (ha) |
|-----------------------------------|----------------------|---------------------------------------------------|--------------------------------|
| HVFH                              | 100%                 | 5,782                                             | 1,603                          |
| HVFH lower portion Kimsquit River | 100%                 | 1,133                                             | 264                            |

<sup>&</sup>lt;sup>4</sup> South Central Coast Order (March 27, 2009) and the Central and North Coast Order (March 27, 2009). Source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/index.html [accessed online: May 28, 2009].

<sup>&</sup>lt;sup>5</sup> Background and Intent Document for the SCC and CNC Land Use Objectives Orders, April 18, 2008, pg 23. Source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/LUO.pdf. [accessed online: May 20, 2009]

befining Active Fluvial Units, Glynnis Horel - Ostapowich Engineering Services Ltd, April 1, 2006, pg 2

Primary source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/index.html. Schedule 7 – Kimsquit 150 m Buffer source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/docs/kimsquit\_sched\_20090316.pdf. Buffer polygon source: ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm\_data/CNC\_Amendments/Kimsquit\_River\_cnc.zip [accessed online: May 20, 2009] It should be noted that this polygon did not line up well with the 20k stream netdown – was obviously created from more coarse data.

The total productive area shown here represents only the incremental reserves beyond FRPA requirements. If HVFH were to be implemented without FRPA, this area would be significantly higher.

#### 3.3.12.2 Aquatic Non High Value Fish Habitat (EBM Obj 10)

Aquatic non-high value fish habitat was also derived from the TRIM 20,000 scale stream data and using FRPA stream classifications. Both orders require that S1-S3 streams, lakes >0.25 ha, and wetlands >0.25 ha that are not HVFH be classified as aquatic non-high value fish habitat. The orders differ slightly in their requirements for reserves (Table 19) and the areas impacted can be found in Table 20.

Table 19. Riparian Retention requirements for Aquatic Non HVFH

| Riparian Feature                  | SCC Order                                                 | CNC Order                 |  |
|-----------------------------------|-----------------------------------------------------------|---------------------------|--|
| S1- S3 Streams that are not HVFH  | Retain 90% of the PFLB within 1.5                         | 5x dominant tree height * |  |
| 31-33 Streams that are not highly | (implemented as 100% reserve w                            | ithin 1.35x tree height)  |  |
| Lakes and wetlands >1ha           | Retain 90% of the PFLB within 1.5x dominant tree height * |                           |  |
| Lakes and wettailus > ma          | (implemented as 100% reserve within 1.35x tree height)    |                           |  |
|                                   | SCC order: 90% Retention                                  | CNC order: 90% Retention  |  |
| Lakes and wetlands 0.25 to 1ha    | within 1.5 tree height.                                   | within 1.0 tree height.   |  |
|                                   | (1.35 x tree height)                                      | (0.9 x tree height)       |  |

<sup>\*</sup> Tree heights were 30 m on outer coast and 40 m on inner coast.

Table 20. Reductions for Aquatic NonHVFH

| Description Percent Reduction |      | Prod Area (ha)<br>(Incremental to Other<br>Riparian) | Effective Netdown<br>Area (ha) |
|-------------------------------|------|------------------------------------------------------|--------------------------------|
| Aquatic Non HVFH              | 100% | 6,630                                                | 2,094                          |

The total productive area shown here represents only the incremental reserves beyond FRPA requirements. Without FRPA, this area would be significantly higher.

#### 3.3.12.3 Forested Swamps (EBM Obj 11)

Both EBM orders require that forested swamps >0.25 ha are to have 70% retention within 1.5x the dominant tree height. Because they are relatively rare in coastal BC<sup>8</sup>, and typically have marginal timber values on them, they were assumed to be addressed in the netdown for stand level retention (EBM Obj 16).

## 3.3.12.4 Active Fluvial Units (EBM Obj 13)

Floodplain (active fluvial units) areas were identified using the CCLRMP floodplain dataset (which was derived using the coastal small scale PEM SELES model) and the mapped TRIM floodplains. These areas were then reduced by excluding any areas occupied by coniferous stands at least 200 years old (>80% coniferous) and any isolated polygons <=0.25 ha in size. The very small polygons were considered to be noise in the dataset and eliminated. The CCLRMP floodplains included high bench floodplains that were not meant to be considered active fluvial units in the final orders. Thus areas with old conifer stands were assumed to be stable within the timeframe of forest management and not "active fluvial units" as defined in the orders (Defining Active Fluvial Units, Glynnis Horel, P. Eng., Ostapowich Engineering Services Ltd, April 1, 2006).

May 10, 2010 20

\_

Pers. Con. Ken Zielke of Symmetree Consulting Ltd. Based on experience doing EBM training work and compliance assessments.

Reserved areas for floodplains are detailed in both the North and South Central Coast EBM orders, although the application of reserves differs. The SCC order requires the reserve of 90% of mapped floodplain areas and the CNC order requires the reserve of 100% of mapped floodplain areas plus 90% retention within 1.5 times dominant tree hts (1.35X avg. dominant tree ht.). Tree heights were 30 m on outer coast and 40 m on inner coast.

Within the SCC area, the area to be reserved (90%) was selected using any constrained land base first and then any unconstrained land base starting with the lowest site indexes.

Table 21. Reductions for Active Fluvial Units

| Description                              | Percent<br>Reduction | Prod Area (ha)<br>(Incremental to Other<br>Riparian) | Effective Netdown<br>Area (ha) |
|------------------------------------------|----------------------|------------------------------------------------------|--------------------------------|
| Active Fluvial Units (Floodplains) – SCC | 100%                 | 941                                                  | 203                            |
| Active Fluvial Units (Floodplains) – CNC | 100%                 | 4,752                                                | 947                            |
| Total                                    |                      | 5,693                                                | 1,150                          |

The total productive area shown here represents only the incremental reserves beyond FRPA requirements. Without FRPA, this area would be significantly higher.

#### 3.3.13 Grizzly Bear Habitat (EBM Obj. 17)

Grizzly bears are a highly important regional species on the South Central Coast and Central and North Coast. The EBM orders spatially identify grizzly bear habitat and require that it be maintained as functional habitat. The WHA's discussed under section 3.3.8 have a high degree of overlap with these EBM grizzly habitat areas.

#### SCC Order Area:

The order requires that grizzly bear habitat mapped in Schedule 2 (released March 2009)<sup>9</sup> be maintained. These mapped areas represent class 1 grizzly bear habitat. The order provides for limited harvesting to occur in these areas if a qualified professional confirms that it will not cause a 'material adverse impact' to the suitability of the grizzly bear habitat, suitable monitoring is completed, and information sharing/consultation takes place with First Nations. Limited harvesting can also occur if needed to accommodate minor block boundary adjustments, or if no practicable alternative for road access exists.

#### CNC Order Area:

This order requires that all class 1 grizzly bear habitat and 50% of class 2 grizzly habitat as mapped in Schedule 2 be maintained (released March 2009)<sup>10</sup>. It also allows for harvesting under the same circumstances described for SCC Order above.

#### Implementation:

The licensees felt that this would preclude harvest from 90% of the mapped habitat based on their opinion that not all of the mapped area will have the desired attributes on the ground, a small amount of harvesting would not negatively impact habitat values, and small incursions for operational/safety reasons is allowed. Thus, a spatial netdown representing 90% of the mapped grizzly habitat area was implemented. The 90% target was met in each grizzly polygon unit by selecting non-contributing or constrained areas first – this left the areas most likely to be in the THLB as contributing. For example, if up to 10% of the mapped habitat area in a grizzly polygon is THLB then there would be no impact on the THLB. Table 22 shows the effective netdown area from the THLB (2,745 ha).

The grizzly polygon GIS data obtained for both EBM orders was dissolved on Class 1 and 2 (adjacent polygons in the same class become one polygon). The constraint is applied using these grizzly polygons. The data also identified previously harvested areas as habitat, which should not have been

May 10, 2010 21

<sup>&</sup>lt;sup>9</sup> Source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/docs/grizzly\_bear\_sched\_sc\_20090323.pdf. Database source: ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm\_data/SCC\_Amendments/Grizzly\_scc.zip [accessed online: May 20, 2009] 
<sup>10</sup> Source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/docs/grizzly\_bear\_sched\_nc\_20090323.pdf. Database source: ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm\_data/CNC\_Amendments/grizzly\_bear\_nc.zip [accessed online: May 20, 2009]

included and thus were excluded them from the analysis<sup>11</sup>. Previously logged areas provide temporary habitat because of high abundance of berries but are not a permanent grizzly bear habitat area.

Table 22. Reductions for Grizzly Bear Habitat

| Description                      | Prod Area<br>(ha) | Percent<br>Reduction | Area<br>Reduction (ha) | Effective<br>Netdown Area (ha) |
|----------------------------------|-------------------|----------------------|------------------------|--------------------------------|
| CNC Class 1 Grizzly Bear Habitat | 36,356            | 90%                  | 32,721                 | 2,245                          |
| CNC Class 2 Grizzly Bear Habitat | 4,747             | 50%                  | 2,374                  | 59                             |
| SCC Class 1 Grizzly Bear Habitat | 8,139             | 90%                  | 7,325                  | 441                            |
| Total                            | 49,243            |                      | 42,420                 | 2,745                          |

## 3.4 Exclusions from the Productive Forest Land Base (Non-Spatial)

#### 3.4.1 EBM Objective 4, 5, 6, 7 – First Nations Considerations

Both the Central and North Coast Order (CNC) and the South Central Coast Order (SCC) contain objectives to manage for issues important to First Nations that will result in land base netdowns:

- Objective 4 (Traditional Heritage Features) is aimed at protecting specific traditional heritage features that are of continuing importance to First Nations.
- Objective 5 (Culturally Modified Trees) is designed to identify and protect culturally modified trees of continuing importance to First Nations.
- Objective 6 (Monumental Cedar) is designed to provide for a sufficient volume of monumental cedar to support the present and future cultural cedar needs of First Nations.
- Objective 7 (Stand Level Retention of Cw/Yc) is designed to ensure that sufficient western red and yellow cedar is maintained within Cedar Stewardship Areas to support the applicable First Nations use of these species for cultural and social uses.

Note: Objective 3 (Traditional Forest Resources) is not addressed through netdowns so is not included here. See section 8.5.1 for details.

The consideration of First Nations values described in EBM Objective's 4, 5, 6, and 7 are estimated to have a 1.3% net/incremental impact on the THLB (Obj 3 is addressed in 8.5.1). This impact level is based on a similar netdown developed for the Kingcome TSR3 project where the known impact was mapped and then doubled. The Kingcome dataset representing known First Nations heritage sites was more complete, and updating the Mid Coast dataset was not considered practical within the timelines of this TSR. The technical committee felt that it was best to rely on the recent efforts invested in Kingcome TSA for application in the Mid Coast TSA. This 1.3% impact was implemented as a non spatial reduction to all THLB polygons and the resulting netdown was treated as part of the PFLB.

The full impact of managing for First Nations considerations is known to be larger than 1.3% but this value represents the incremental impact after other factors are also considered (e.g. parks, inoperable, ESA's, FRPA and EBM riparian areas, wildlife habitat reserves, stand level retention requirements, etc). These other factors leave only ~13% of the forested landbase where timber harvesting is expected to occur and it is this area that the additional 1.3% impact is applied. Uncertainty around this issue will be addressed in the THLB size sensitivity analysis.

## 3.4.2 EBM Objective 15 – Red and Blue Listed Plant Communities

The SCC and CNC orders require 100% retention (5% can be disturbed for access) of red listed plant communities and 70% retention of blue-listed plant communities. Identifying the spatial locations of these communities is currently difficult as there is little detailed ecosystem mapping available for the Mid Coast TSA. Thus, the net THLB impact for the Kingcome TSR3 process was considered as a starting point. The

May 10, 2010 22

-

<sup>&</sup>lt;sup>11</sup> Pers. Con. Tony Hamilton. Large Carnivore Specialist, Wildlife Science Section. Ministry of Environment, Victoria, BC.

Kingcome TSR3 analysis applied a 3% incremental net impact over and above all other landbase constraints that came from EBM being applied to 80% of the landbase, mathematically this would extrapolate to 3.8% for Midcoast (100% EBM).

However, the Kingcome TSA estimate was based on a biophysical model simulation of ecosystems and correlations between these ecosystems and red/blue listed plant communities developed by the Timberline Natural Resources Group. After consideration of the methods used to identify these sites in the biophysical modeling project, and the improved understanding of how sites are to be identified in the field the Mid Coast licensees felt that a 3% impact is likely excessive and thus it should not be increased any further. The basis for this conclusion is primarily because the areas attributed to the plant communities listed in Obj15 (Sched 6) are expected to occupy only a subset of the mature site series that was spatially identified in the biophysical model and the site series described on the CDC Blue List. In addition to this operational experience suggests that an incremental impact for Blue Listed plant communities is unnecessary. Thus 3% will be used in the base case. This impact is entirely attributed to blue listed plant communities because red listed plant communities are assumed to be captured by other netdowns. The 3% net impact was implemented as a non spatial area reduction to all THLB polygons. The resulting netdown area was treated as part of the PFLB. Uncertainty around this issue will be addressed in the THLB size sensitivity analysis.

#### 3.4.3 Stand Level Retention (EBM Obj. 16)

The retention of mature standing timber in each block is required to provide structure and diversity at the stand level. Both the SCC and CNC orders state that a minimum 15% of each cutblock should be retained and 50% of this retention should be internal to the cutblock if it's over 15 ha. For the purpose of timber supply analysis, it was necessary to determine what the net impact of this stand level retention objective was because there is significant overlap with other factors already being modeled. For example, riparian areas are often used to meet stand level retention requirements and they have already been addressed in the THLB netdown process.

Based on an EBM monitoring report produced by Symmetree Consulting Group that examined the retention left in EBM blocks in 2006<sup>13</sup>, the net impact of the 15% retention requirement was estimated by Forsite to have an incremental impact of 4.6% on the THLB after all other netdowns were considered. The key findings were that the group retention and clearcut blocks had an actual retention level of 21% (instead of 15%) and 21.8% of this retention appeared to be incremental to the netdowns already spatially addressed in this analysis. This suggested a 4.6% net impact from the EBM stand level retention requirement.

District MFR staff also examined this issue using RESULTS data (2005-2008) and found that blocks with aggregate retention had retained 23% on average. This estimate is slightly higher than that found by Symmetree (21%) but came from a much larger sample. As there was no breakdown in RESULTS of the reasons why the 23% was left, the Symmetree study's net impact percentage (21.8%) was used to reduce the 23% to a net impact of 5.0% (above all spatial netdowns). Licensees felt that a gross retention percentage of 23% (net 5%) was higher than what was currently occurring on the landbase but agreed to use it for the purpose of this analysis.

The 1.3% impact discussed earlier for First Nations EBM considerations was felt to partially overlap with the 5% because it had not yet been considered in the estimate, plus the licensees would likely choose to use areas retained for First Nations issues (CMT's, heritage sites) to meet stand level retention objectives. In absence of better information, it was assumed that 50% of the 1.3% would overlap (1.3\* 50%=0.6) so this left a 4.4% net impact (5% -0.6%) to be attributed to stand level retention. This level of netdown appears conservative considering the fact that >88% of the TSA's productive forested land base has already been excluded from timber harvesting and incremental impacts for First Nations issues and Red/Blue listed plant communities are also being assumed.

May 10, 2010 23

...

<sup>&</sup>lt;sup>12</sup> Methods Used to Model Ecosystem Based Management in the Kingcome TSA for Timber Supply Review 3, Timberline Natural Resource Group. 2007

<sup>&</sup>lt;sup>13</sup> Implementation Monitoring of EBM in the Central Coast (Symmetree, Feb 28, 2007)

This 4.4% impact was modeled as a non spatial reduction to all THLB polygons (in addition to the 1.3% for FN issues and 3% for red/blue listed species). The resulting netdown was treated as part of the PFLB. Uncertainty around this issue will be addressed in the THLB size sensitivity analysis.

### 3.5 Timber License Reversions

Timber licensees (TL's) are old tenures where licensees have the rights to harvest standing mature timber within specified tenure boundaries and this harvest does not count toward the TSA's AAC. Once harvested and regenerated, these areas revert to the crown and become part of the TSA land base – thus contributing to the mid and long term timber supply in the TSA.

Area that were < 50 yrs old inside the mapped TL's were consider to have already reverted to the TSA for purposed of timber supply modeling. The remaining areas were considered to revert at 600 ha per year (consistent with TSR2 assumptions.)

Table 23 provides a summary of the TL's falling inside the Mid Coast TSA.

Table 23. Timber Licences occurring in the Mid Coast TSA

| TL#   | Licensee            | Location | Expiry Date                          |
|-------|---------------------|----------|--------------------------------------|
| T0377 | A&A Trading Ltd     | TSA      | June 10, 2019                        |
| T0398 | IFP                 | TSA      | Sept. 3, 2024                        |
| T0407 | IFP                 | TSA      | Sept. 3, 2009 (extension submitted). |
| T0438 | IFP                 | TSA      | Sept. 3, 2010                        |
| T0474 | IFP                 | TSA      | Sept. 3, 2024                        |
| T0483 | IFP                 | TSA      | Sept. 3, 2017                        |
| T0572 | IFP                 | TSA      | Sept. 3, 2015                        |
| T0608 | IFP                 | TSA      | Sept. 3, 2024                        |
| T0614 | Dean Channel FP Ltd | TSA      | Sept. 3, 2021                        |
| T0633 | Dean Channel FP Ltd | TSA      | Sept. 3, 2015                        |
| T0690 | IFP                 | TSA      | Dec. 9, 2010                         |
| T0697 | IFP                 | TSA      | Dec. 30, 2009                        |
| T0742 | IFP                 | TSA      | Apr. 16, 2016                        |
| T0906 | WFP                 | TSA      | Expired (extension submitted).       |
| T0912 | WFP                 | TSA      | Apr. 27, 2010                        |
| T0941 | IFP                 | TSA      | Oct. 23, 2007                        |
| T0945 | IFP                 | TSA      | Oct. 23, 2009                        |
| T0952 | A&A Trading Ltd     | TSA      | Oct. 23, 2024                        |
| T0964 | IFP                 | TSA      | Oct. 23, 2024                        |
| T0973 | IFP                 | TSA      | Oct. 23, 2024                        |
| T0980 | IFP                 | TSA      | Oct. 23, 2024                        |
| T0996 | IFP                 | TSA      | Oct. 23, 2024                        |
| T1001 | IFP                 | TSA      | Oct. 23, 2014                        |

The TL's that will revert to the Community Forest's upon harvest will not contribute toward the TSA in the future. Only the areas associated with the TL's that will ultimately revert to the TSA are shown below.

Table 24. Timber license area summary

| <b>Currently Reverted Area</b> | Currently Unreverted Area | Total Area |
|--------------------------------|---------------------------|------------|
| (ha)                           | (ha)                      | (ha)       |
| 22,409                         | 5,279                     | 27,688     |

## 3.6 Changes from TSR2

Since the last timber supply review for the Mid Coast TSA, numerous changes have occurred that impact the size of the THLB. A summary of these changes is provided below:

- New Conservancies, and Biodiversity, Mining and Tourism Areas have been established.
- Two new community forest tenures exist and are no longer part of the TSA.
- A new operable area was defined using stand level economic assessments and Patchworks modeling.
- Low productivity site netdowns now use lower thresholds (vol/ha and site index).
- Recreation netdowns are now based on a new inventory and then limited to areas outside of the most constraining VQO polygons (Preservation, Retention, Partial Retention)
- Legal WHA's exist for grizzly bear.
- New Mountain Goat Winter Range areas have been established and almost entirely exclude harvest.
- Riparian netdowns were implemented spatially using classified stream/lake/wetland datasets.
- Culturally Modified Trees (CMT's) were addressed as part of the First Nations EBM issue.
- EBM considerations from the North and South Central Coast Orders resulted in netdowns for:
  - High Value Fish Habitat (HFVH)
  - Aquatic Non High Value Fish Habitat
  - o Active fluvial units (floodplains)
  - CMT's/Cultural Cw/ Monumental Cw
  - o Grizzly Bear Habitat
  - o Stand Level Retention / Forested Swamps
  - Red and Blue List Species

The TSR3 short term effective THLB of 123,162ha is smaller than the TSR2 'preferred reference' forecast <sup>14</sup> THLB by 35.3%. The majority of this difference comes from the introduction of new parks/protected areas, a new operable land base, and the introduction of EBM and wildlife requirements.

Other, non-THLB related changes since TSR2 include (described in section 8.0):

- Disturbance limits exist in Important Fisheries Watersheds (EBM Obj. 8)
- ECA requirements applied in portions of certain watersheds to manage Upland Streams (EBM Obj. 12)
- Higher old seral retention requirement are now applicable and they were modeled at a finer level on the land base (LU-site series surrogate combinations instead of LU-BEC variant combinations).
- The amount of mid seral forest was limited to 50% within LU-SSS combinations.
- A new UWR order for black tailed deer exists and requires from 20-25% of the habitat in each LU to be >141 yrs old at any time. TSR 2 required 25% > 250 yrs old.
- Dispersed Retention harvesting is modeled in Preservation and Retention VQO areas and no forest cover disturbance constraints are applied in these areas. Dispersed Retention harvesting is also applied in 10% of the Partial Retention VQO areas, along with forest cover disturbance constraints.
- Existing dispersed retention blocks were assigned to a separate AU (315) with reduced yields.

May 10, 2010 25

-

<sup>&</sup>lt;sup>14</sup> 190425 ha - TSR2 Rationale pg 17. This THLB area was the same as in the 'revised operability' forecast but the rate of harvest from the outer coast and non-conventional areas was controlled to be sustainable over the long term – effectively lowering the amount of these areas that could be accessed in the short and midterm and making this comparison of land base imperfect.

# 4.0 Growth and Yield

## 4.1 Analysis Units

To reduce the complexity and volume of information in the timber supply analysis, individual stands were aggregated into 'analysis units' based on leading tree species (inventory type group), site productivity, and age. Each analysis unit had an associated yield table that provided the net merchantable volume available for harvest at various stand ages.

Table 25. Analysis Unit Descriptions

|                              | Existing        | Regen          | PFLB             | THLB         | SI                  | SI<br>Wtd    | Variables us       | ne analysis            |                       |  |
|------------------------------|-----------------|----------------|------------------|--------------|---------------------|--------------|--------------------|------------------------|-----------------------|--|
| Analysis Unit Description    | Stand<br>AU #   | Stand<br>AU#   | Area<br>(ha)     | Area<br>(ha) | Wtd<br>Avg<br>(Inv) | Avg<br>(Adj) | Leading<br>Species | Site<br>index<br>range | Age<br>Range<br>(yrs) |  |
| Existing Natural Stands:     |                 |                | 980,833          | 105,999      |                     |              |                    |                        |                       |  |
| Douglas-fir-good             | 101             | 201            | 1,111            | 400          | 29.7                | 29.7         | Fd                 | >27                    | 26-140yrs             |  |
| Douglas-fir-medium           | 102             | 202            | 3,397            | 789          | 24.7                | 24.7         | Fd                 | 20-27                  | 26-140yrs             |  |
| Douglas-fir-poor             | 103             | 203            | 3,630            | 119          | 17.9                | 17.9         | Fd                 | <20                    | 26-140yrs             |  |
| Cedar-good                   | 104             | 204            | 1,163            | 621          | 27.2                | 23.9         | Cw or Yc           | >23                    | 20-140yrs             |  |
| Cedar-medium                 | 105             | 205            | 3,087            | 2,002        | 22.9                | 23.1         | Cw or Yc           | >19-23                 | 20-140vrs             |  |
| Cedar-poor                   | 106             | 206            | 1,029            | 573          | 15.5                |              | Cw or Yc           | 15-19                  | 20-140yrs             |  |
| Cedar-low                    | 107             | 207            | 1,991            | 122          | 13.8                | 23.6         | Cw or Yc           | <15                    | 20-140yrs             |  |
| Hemlock/balsam-good          | 108             | 208            | 6,331            | 2,191        | 28.1                | 27.3         | H or B             | >22                    | 26-140yrs             |  |
| Hemlock/balsam-medium        | 109             | 209            | 17,570           | 6,230        | 21.6                |              | H or B             | >17-22                 | 26-140yrs             |  |
| Hemlock/balsam-poor          | 110             | 210            | 7,288            | 534          | 14.6                |              | H or B             | 12.5-17                | 26-140yrs             |  |
| Hemlock/balsam-low           | 111             | 211            | 12,151           | 39           | 11.7                | 24.8         | H or B             | <12.5                  | 26-140yrs             |  |
| Spruce-good                  | 112             | 212            | 1,316            | 282          | 27.7                | 27.7         | S                  | >22                    | 26-140yrs             |  |
| Spruce-medium                | 113             | 213            | 3.444            | 318          | 20.7                | 20.7         | Š                  | 15-22                  | 26-140yrs             |  |
| Spruce-poor                  | 114             | 214            | 4,097            | 55           | 11.7                | 11.7         | S                  | <15                    | 26-140yrs             |  |
| Douglas-fir-good             | 121             | 221            | 391              | 42           | 27.7                | 27.7         | Fd                 | >27                    | >140vrs               |  |
| Douglas-fir-medium           | 122             | 222            | 5,283            | 1,007        | 23.2                | 23.2         | Fd                 | 20-27                  | >140yrs               |  |
| Douglas-fir-poor             | 123             | 223            | 9,325            | 643          | 18.7                |              | Fd                 | <20                    | >140yrs               |  |
| Cedar-good                   | 124             | 224            | 386              | 149          | 24.2                |              | Cw or Yc           | >23                    | >140yrs               |  |
| Cedar-medium                 | 125             | 225            | 2.717            | 816          | 20.4                | _            | Cw or Yc           | >19-23                 | >140yrs               |  |
| Cedar-poor                   | 126             | 226            | 48,270           | 17,279       | 16.6                | 20.9         | Cw or Yc           | 15-19                  | >140yrs<br>>140yrs    |  |
| Cedar-low                    | 127             | 227            | 262,713          | 36,515       | 13.1                | 19.2         | Cw or Yc           | <15                    | >140yrs<br>>140yrs    |  |
| Hemlock/balsam-good          | 127             | 228            | 4,558            | 520          | 24.3                | -            | H or B             | >22                    | >140yrs<br>>140yrs    |  |
| Hemlock/balsam-medium        | 129             | 229            | 44,770           | 10.048       | 18.8                | 25.2         | H or B             | >17-22                 | >140yrs<br>>140yrs    |  |
| Hemlock/balsam-poor          | 130             | 230            | 132,065          | 19,987       | 15.0                | -            | H or B             | 12.5-17                | >140yrs<br>>140yrs    |  |
| •                            |                 |                |                  | ,            |                     | 23.0         | -                  | <12.5-17               |                       |  |
| Hemlock/balsam-low           | 131<br>132      | 231<br>232     | 133,282<br>3,436 | 2,868<br>341 | 11.7<br>27.4        |              | H or B             | >22                    | >140yrs<br>>140yrs    |  |
| Spruce-good                  |                 |                | ,                |              |                     |              | S                  |                        |                       |  |
| Spruce-medium                | 133             | 233            | 23,452           | 730          | 18.8                |              | S                  | 15-22                  | >140yrs               |  |
| Spruce-poor                  | 134             | 234            | 43,764           | 778          | 13.3                | 13.3         | S                  | <15                    | >140yrs               |  |
| Non Merch - Cottonwood       | 151             | 256            | 3,294            | -            | -                   | -            | Ac                 | All                    | All                   |  |
| Non Merch - Alder            | 152             | 255            | 9,016            | -            | -                   | -            | Dr                 | All                    | All                   |  |
| Non Merch - All Others       | 153             | 257            | 186,504          | -            | -                   | -            | At, Mb, Pl, L      | All                    | All                   |  |
| Existing Managed Stands:     |                 |                | 44,810           | 29,343       |                     |              |                    |                        |                       |  |
| Douglas-fir-good             | 301             | 401            | 1,158            | 707          | 28.6                | 28.6         | Fd                 | >27                    | <=25                  |  |
| Douglas-fir-medium/poor      | 302             | 402            | 2,639            | 1,803        |                     |              | Fd                 | 20-27                  | <=25                  |  |
| Douglas-fir-poor             | 303             | 403            | 1,086            | 342          | 16.0                |              | Fd                 | <27                    | <=25                  |  |
| Cedar-good                   | 304             | 404            | 1,010            | 919          | 26.7                | 23.2         | Cw or Yc           | >23                    | <=19                  |  |
| Cedar-medium                 | 305             | 405            | 2,648            | 1,785        | 22.0                | _            | Cw or Yc           | 19-23                  | <=19                  |  |
| Cedar-poor                   | 306             | 406            | 3,359            | 2,281        | 17.0                | 19.1         | Cw or Yc           | 15-19                  | <=19                  |  |
| Cedar-low                    | 307             | 407            | 2,056            | 1,112        | 13.0                |              | Cw or Yc           | <15                    | <=19                  |  |
| Hemlock/balsam-good          | 308             | 408            | 7,623            | 5,375        | 25.1                | 25.6         | H or B             | >22                    | <=25                  |  |
| Hemlock/balsam-medium        | 309             | 409            | 12,895           | 9,320        | 21.5                | 25.8         | H or B             | >17-22                 | <=25                  |  |
| Hemlock/balsam-poor          | 310             | 410            | 4,028            | 2,185        | 15.1                | 21.3         | H or B             | 12.5-17                | <=25                  |  |
| Hemlock/balsam-low           | 311             | 411            | 2,118            | 324          | 11.6                |              | H or B             | <12.5                  | <=25                  |  |
| Spruce-good                  | 312             | 412            | 998              | 581          | 27.8                |              | S                  | >22                    | <=25                  |  |
| Spruce-medium                | 313             | 413            | 1,425            | 860          | 21.0                |              | S                  | 15-22                  | <=25                  |  |
| Spruce-poor                  | 314             | 414            | 89               | 72           | 12.0                |              | S                  | <15                    | <=25                  |  |
| Existing Dispersed Retention | 315             | 415            | 1,678            | 1,678        | 15.8                | 20.4         | Ex blocks w        | ith multi-stori        | ed stk stds           |  |
| Total                        |                 |                | 1,025,643        | 135,343      | 17.2                | 22.5         |                    |                        |                       |  |
|                              | \A/4d A\.ca Adi | \ - I <b>f</b> |                  |              |                     |              |                    |                        |                       |  |

Note: The adjusted site index (SI Wtd Avg -Adj) shown for each AU in this table is only applicable to managed stands (AU's > 200).

#### 4.2 Site Index

Estimates of site productivity were required in this analysis to predict the rate of growth that will occur on each site throughout the TSA. The height of a "site" tree at age 50 (measured at breast height) is one measure of site productivity and is commonly referred to as "site index".

#### 4.2.1 Site Index Adjustment for Managed Stands

Timberline Natural Resource Group completed a Site Index Adjustment (SIA) project for the Mid Coast TSA during 2008<sup>15</sup>. The project developed improved estimates of site index for managed Cw and Hw leading stands. These adjusted site indexes will be used in place of inventory site indexes when building managed stands yield curves (TIPSY curves) for the TSR3 base case.

The statistical adjustment process compared field data to expert derived preliminary estimates of site index generated for individual polygons and then used a ratio-of-means (ROM) statistical procedure to adjust the site indexes. The 95% sampling error was 1.2m for Cw and 1.3m for Hw and was within the target sampling error of ±1.5m (95% probability).

Table 26. Cw and Hw Site Index Adjustment Statistics

|         | Target Po    | Target Population Sample List |    | ole List        |                   |       | Adj.           | Рор.           |           |
|---------|--------------|-------------------------------|----|-----------------|-------------------|-------|----------------|----------------|-----------|
| Species | Area<br>(ha) | Prelim PSI<br>(m)             | n  | Field SI<br>(m) | Prelim PSI<br>(m) | ROM   | R <sup>2</sup> | Avg. SI<br>(m) | SE<br>(m) |
| Cw      | 483,436      | 20.5                          | 42 | 23.6            | 22.6              | 1.046 | 4.4            | 21.4           | 1.2       |
| Hw      | 483,436      | 24.8                          | 60 | 27.7            | 27.6              | 1.002 | 1.1            | 24.9           | 1.3       |

N = number of samples, SE = sampling error.

When the adjusted site indexes are compared against inventory site indexes (Cw and Hw stands) in the target population, the adjusted values can be seen to be significantly higher: +7.3m (or 56%) for Cw and +9.8m (or 63%) for Hw. The change is average site index for each Analysis Unit and the THLB as a whole can be viewed Table 25. When applied fully in the THLB, the average site index rises from 17.2m to 22.3 m (+5.1m or 29.7%).

#### 4.2.2 Site Curves

For each tree species, site curves were available to illustrate the relationship between stand height and age for a range of site indices. In all cases, this analysis used the standard site curves recommended by the BC Ministry of Forests as identified in the *Site Tools* software. They were as follows:

Table 27. Site index source

| Species      | Source                  |
|--------------|-------------------------|
| Cw (coastal) | Kurucz (1985ac)         |
| Hw (coastal) | Wiley (1978ac)          |
| Ss           | Nigh (1997)             |
| Fd (coastal) | Bruce (1981ac)          |
| Ва           | Kurucz (1982ac)         |
| Dr           | Nigh and Courtin (1998) |

#### 4.3 Utilization Level

Utilization levels define the maximum height of stumps that may be left on harvested areas, the minimum top diameter (inside bark), and the minimum diameter at breast height (dbh) of stems that must be removed from

<sup>&</sup>lt;sup>15</sup> Timberline Natural Resource Consultants Ltd. 2009. *Site Index Adjustment of the Mid Coast Timber Supply Area* (Project # BC0108405), January 2009, Timberline Natural Resource Consultants, Victoria, BC

harvested areas. These factors were needed to calculate merchantable stand volume for use in the analysis, and will be used for all analysis units.

Table 28. Utilization levels

| Species                 | Minimum dbh <sup>(5)</sup> (cm) | Maximum stump height (cm) | Minimum top dib <sup>(6)</sup> (cm) |
|-------------------------|---------------------------------|---------------------------|-------------------------------------|
| Existing Natural Stands | 17.5                            | 30                        | 10                                  |
| Existing Managed Stands | 12.5                            | 30                        | 10                                  |
| Future Managed Stands   | 12.5                            | 30                        | 10                                  |

<sup>(5)</sup> Diameter breast height

## 4.4 Decay, Waste and Breakage for Unmanaged Stands

Decay, waste and breakage (DWB) factors are applied to natural stand yield tables (VDYP) to obtain net harvest volumes per hectare. Initial net volume estimates were generated using the adjusted inventory attribute values (age, height, site index) in VDYP with the default decay, waste and breakage factors applied.

## 4.5 Operational Adjustment Factors for Managed Stands

Operational Adjustment Factors (OAFs) were applied in order to adjust potential yields generated by the TIPSY growth and yield model down to net operational volumes. This included reductions for such things as gaps in stands, decay/waste/breakage, and endemic forest health losses.

There were two types of OAFs used in the TIPSY model. OAF 1 is a constant percentage reduction to account for openings in stands, distribution of stems or clumpiness, endemic pests and diseases, and other risks to potential yield. OAF 2 is an increasing percentage reduction that can be applied to account for decay, waste and breakage. OAF 2 is applied after OAF 1 and increases linearly over time from 0 percent at age 0 to the specified percentage at 100 years of age.

Standard operational adjustment factors (OAF) were used to model managed stands. OAF1 was set to 0.85 (15% reduction) and OAF2 was set to 0.95 (5% reduction).

## 4.6 Natural Stand Volume Projections

Yield tables were derived for existing natural stands using VDYP 6 Batch v6.6d. A yield table was generated for each polygon and then aggregated into one table for each Analysis Unit (AU) using area weighted averages. The yield tables used during modeling and are provided in Appendix A.

## 4.7 Managed Stand Yield Tables

All future managed stand AU's had an associated existing stand AU from which it inherited stands when they were logged. These future managed stand AU's used the area weighted adjusted site indexes for each AU (Table 25) and the regeneration assumption outlined in this document (Section 5.0). These values were input into Batch TIPSY 4.1c to generate a yield curve for each AU.

Existing managed stand yields were also derived using the adjusted site index (Table 25) and the regeneration assumptions outlined in Section 5.0. Existing managed stands are those currently under 25 years of age (est. 1983) for Fd, Hw and Ba stands and under 19 years of age (est. 1989) for Cw/Yc stands.

The regeneration assumptions required to model managed stands in TIPSY consist of:

- Species composition (See section 5.1);
- Initial density (See section 5.1);
- Regeneration method (See section 5.1);
- Area-weighted average site index (See section 5.1);

<sup>(6)</sup> Diameter inside bark

- Area-weighted genetic gains (See section 5.4);
- Operational adjustment factors (See section 4.5); and
- Regeneration delay (See section 5.3).

Once merchantable stand yields were obtained from TIPSY, yield estimates were further reduced to reflect the area lost to future roads (see section 3.2.4.3). These 'effective' yield tables were used during modelling and are provided in Appendix A.

## 4.8 Existing Timber Volume Check

To verify that no errors were made in natural stand yield table aggregation and that no significant aggregation bias exists, the total volume of the current (starting) inventory using polygon-specific inventory volumes was compared to the volume derived using analysis unit yield tables. The results for existing natural (VDYP) AU's are shown in Table 29 by AU and in Table 30 by age class.

Table 29. Existing timber volume check by AU

| AU       | THLB Area | Volume deri          | ved from:  | Difference From Inv |        |                                            |
|----------|-----------|----------------------|------------|---------------------|--------|--------------------------------------------|
|          | (ha)      | Yield tables<br>(AU) | Inventory  | m <sup>3</sup>      | %      | Comments                                   |
| 101      | 400       | 187,943              | 190,160    | 2,217               | -1.2%  |                                            |
| 102      | 789       | 226,177              | 238,057    | 11,880              | -5.3%  |                                            |
| 103      | 119       | 17,139               | 16,269     | -870                | 5.1%   |                                            |
| 104      | 621       | 111,184              | 109,638    | -1,546              | 1.4%   |                                            |
| 105      | 2,002     | 84,727               | 67,464     | -17,263             | 20.4%  |                                            |
| 106      | 573       | 24,876               | 48,435     | 23,559              | -94.7% |                                            |
| 107      | 122       | 16,284               | 24,075     | 7,791               | -47.8% |                                            |
| 108      | 2,191     | 739,080              | 700,676    | -38,404             | 5.2%   |                                            |
| 109      | 6,230     | 654,081              | 583,484    | -70,597             | 10.8%  |                                            |
| 110      | 534       | 76,249               | 83,662     | 7,413               | -9.7%  | ALU: 404 ( . 444 / . List                  |
| 111      | 39        | 7,409                | 9,526      | 2,117               | -28.6% | AU's 101 to 114 (which are                 |
| 112      | 282       | 72,874               | 55,022     | -17,852             | 24.5%  | natural stands <140 yrs),                  |
| 113      | 318       | 38,272               | 30,741     | -7,531              | 19.7%  | tended to have poorer correlations between |
| 114      | 55        | 7,178                | 8,297      | 1,119               | -15.6% | inventory and yield tables.                |
| 121      | 42        | 37,709               | 38,670     | 961                 | -2.5%  | Better correlations occurred               |
| 122      | 1,007     | 660,526              | 702,063    | 41,537              | -6.3%  | in the older (≥ 140 yrs) AU's              |
| 123      | 643       | 265,690              | 316,599    | 50,909              | -19.2% | where the bulk of the THLB                 |
| 124      | 149       | 125,724              | 129,024    | 3,300               | -2.6%  | exists.                                    |
| 125      | 816       | 592,201              | 627,640    | 35,439              | -6.0%  | SAISIS.                                    |
| 126      | 17,279    | 10,151,917           | 10,189,438 | 37,521              | -0.4%  |                                            |
| 127      | 36,515    | 15,668,931           | 16,043,562 | 374,631             | -2.4%  |                                            |
| 128      | 520       | 520,147              | 495,790    | -24,357             | 4.7%   |                                            |
| 129      | 10,048    | 8,413,272            | 8,178,844  | -234,428            | 2.8%   |                                            |
| 130      | 19,987    | 12,540,019           | 12,543,481 | 3,462               | 0.0%   |                                            |
| 131      | 2,868     | 1,311,870            | 1,368,975  | 57,105              | -4.4%  |                                            |
| 132      | 341       | 395,122              | 365,441    | -29,681             | 7.5%   |                                            |
| 133      | 730       | 868,607              | 672,146    | -196,461            | 22.6%  |                                            |
| 134      | 778       | 587,310              | 572,074    | -15,236             | 2.6%   |                                            |
| All VDYP | 105,999   | 54,402,518           | 54,409,254 | 6,736               | -0.01% |                                            |

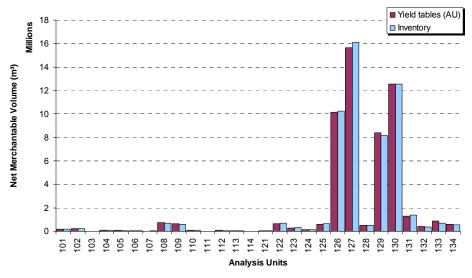



Figure 6. Net volumes by AU based on AU curves or forest inventory data

Table 30. Existing timber volume check by Age Class

| Age      | THLB Area | Volume deri          | Volume derived from: |                | om Inv | Comments                     |  |  |
|----------|-----------|----------------------|----------------------|----------------|--------|------------------------------|--|--|
| Class    | (ha)      | Yield tables<br>(AU) | Inventory            | m <sup>3</sup> | %      |                              |  |  |
| 0-20     | 348       | 318                  | 21                   | -297           | 93.4%  | Yield curves in younger age  |  |  |
| 21-40    | 9,041     | 482,169              | 392,918              | -89,251        | 18.5%  | classes (<140 years) tended  |  |  |
| 41-60    | 2,237     | 474,608              | 471,509              | -3,099         | 0.7%   | to have poor correlations    |  |  |
| 61-80    | 400       | 151,515              | 142,150              | -9,365         | 6.2%   | between yield curves and     |  |  |
| 81-100   | 723       | 360,584              | 340,686              | -19,898        | 5.5%   | inventory volumes. Better    |  |  |
| 101-120  | 442       | 230,147              | 244,180              | 14,033         | -6.1%  | correlations occurred in the |  |  |
| 121-140  | 1,084     | 564,132              | 574,041              | 9,909          | -1.8%  | older (≥ 140 yrs) age        |  |  |
| 141-250  | 13,013    | 7,508,271            | 7,510,991            | 2,720          | 0.0%   | classes where the bulk of    |  |  |
| 250+     | 78,711    | 44,630,774           | 44,732,757           | 101,983        | -0.2%  | the THLB exists.             |  |  |
| All VDYP | 105.999   | 54.402.518           | 54.409.254           | 6.736          | -0.01% |                              |  |  |

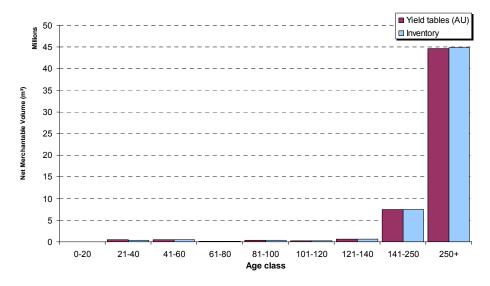



Figure 7. Net volumes by age class based on AU curves or forest inventory data

Overall, the volumes being generated from the AU yield tables correlated well with the inventory (<1% difference).

## 5.0 Silviculture

## 5.1 Silviculture management regimes

While several different silvicultural management regimes have historically been utilized in the Mid Coast TSA, the dominant regime has been to clearcut and retain patches of leave trees within or adjacent to harvest units. With the introduction of EBM, there has been an emphasis on leaving more retention, and leaving a porton of it internal to the block for larger harvest units. Specific to the Mid Coast TSA, this type of silviculture can be broken down into two broad categories:

#### Clearcut with Reserves

- Retention is left in patches that are either along the edge of a block or internal to a block and these patches are retained for a full rotation. With EBM, blocks over 15 ha in size require half of the required retention to be left internal to the block. This has been interpreted to mean islands of trees, riparian strips, or fingers of retention jutting out into the block. <sup>16</sup>
- The amount of retention left in clearcut with reserve blocks in the Mid Coast TSA has historically averaged 23% and this is addressed though spatial netdowns and the stand level retention netdown discussed in section 3.4.3.
- EBM is likely to result in more internal retention than in traditional FRPA blocks and thus there is potential for some incremental productivity losses associated with forest edge/shading. This issue is currently not modeled in BC when clearcut with reserves is used because it is very small, but as retention levels and the amount of edge increases, the issue could begin to be a concern. No productivity reductions have been modeled here because TIPSY does not model edge impacts from cutblock perimeter edge and because EBM does not explicitly require internal retention to provide 'forest influence' over any particular amount of the block (there is no spacing requirements for retention).
- This silviculture regime is expected to be the dominant approach used in the TSA going forward.

#### • Dispersed Retention

- Retention is left scattered throughout the harvest unit so that most of the unit is under some influence of retained stems.
- This type of retention was used in a subset of blocks in the Mid Coast between 2001 and 2006, but it has not been used in recent years because of challenges getting stocking standards approved in FSP's and sustainability concerns when high levels of retention were used.
- Between 2001 and 2006, the amount of retention in dispersed retention blocks was higher than with clearcut with reserves blocks (retention levels avg. 34%). This is partially because the systems were often utilized in areas managed for visuals or other non timber values.

#### Modeling Historical Dispersed Retention;

- Based on RESULTS data, blocks utilizing multi-storied stocking standards were queried out and assumed to be dispersed retention blocks. This provided an area of ~2,800 ha but only 1,678 ha were in the THLB. Numerous existing blocks were removed by netdowns such as operability and ESA soils netdowns. Recent blocks start the analysis at an age of zero.
- The 1,678 ha were placed into a separate Analysis Unit (AU 315) and had a yield curve developed that reflected 34% of the stand as mature and 66% of the stand as regenerating.
- A regenerating yield curve was developed in TIPSY using the inputs shown in Table 32 and assuming a retention level of 34% (80% dispersed, 20% aggregate). Top heights were 40 m, crown size was 30 m², and aggregate group sizes were a half hectare (5,000 m²). This curve was used to define the minimum harvest age.

Background and Intent Document for the South Central Coast and Central and North Coast Land Use Objectives Orders Apr 2008 <a href="http://archive.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/LUO.pdf">http://archive.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/LUO.pdf</a> page 42

- The volume attributed to the mature portion of the stand was estimated using the VDYP curve for 109 (HB Med) and an assumed harvest age of 150 years (628 m³/ha, conservative estimate of volume).
- The volume for the retained stand (34% of AU 109 at age 150) was added to the TIPSY regen curve at time zero and shifted the entire TIPSY curve upward. This was done so that the old VR retention prescription is not imbedded in the yield curve only the reduced productivity on the regenerating portion of the stand is reflected in the curve (not loss of growing space). Without this step, we would be assuming that 34% of the area would never be harvested again. The intent is to recognize the full volume on the site (less std spatial netdowns) if it is clearcut in the future or else follow the future VR prescription if it is designated for that to occur (R, P, 10%PR VQO's).

### o Modeling Future Dispersed Retention (DR)

- Any future use of dispersed retention is expected to be limited to highly constrained visually sensitive areas. All stands within Preservation or Retention VQO polygons will be modeled as DR, and 10% of the THLB in Partial Retention VQO's (selected randomly) will be modeled as DR. This results in 7,185 ha of THLB being assigned to DR future treatments (599 ha of which were also historical DR).
- Future DR has been defined as 30% retention (10% dispersed + 20% group). The group retention was assumed to be captured by the spatial netdowns and the 4.4% stand level retention already being applied. Thus, the 4.4% was applied in addition to 10% DR.
- 14.4% (10 DR + 4.4 Agg Retn) of the landbase was retained spatially for each DR polygon<sup>17</sup> throughout the analysis. Thus the first harvest entry with a DR treatment has no yield curve reduction but does have 10% less area harvested than if it was clearcut.
- Any second entry harvests in DR polygons use reduced yield curves that reflect the lower productivity of regeneration in DR stands (loss of growing sites already taken care of by the spatial netdown applied above).
- A TYPSY yield curve was generated for each AU from its published regen assumptions but with a shift to 80% planting/20% natural and applying a 10% retention factor (100% dispersed). Top heights were 40 m and crown size was 30 m<sup>2</sup>.
- A percent yield impact was determined relative to the AU's clearcut yield curve, and then reduced to reflect the fact that the loss of growing site is already being modeled spatially (so impact reduced by 10%). This avoids double counting the loss of growing site.
- The DR yield reduction for each AU (using 100 years as base age) was then used to factor down the clearcut yields for each AU (creating a virtual set of DR AU's). For example, if TIPSY showed a 18% yield impact with DR relative to its clearcut equivalent, a DR harvest yield was derived by factored down the typical AU yield by 8% while the other 10% was implemented throughout the analysis as a spatial retention. This is consistent with what is occurring on the ground the retained portion of the stand is not logged and the regenerating portion experiences a yield reduction.
- In general, the 10% DR resulted in 19-25% (avg. ~23%) gross yield impacts in TIPSY. These were modeled as 9-15% yield impacts (other 10% were modeled spatially as well as 4.4% for aggregate groups).

The term 'High Retention' harvesting has received a large amount of attention in the last several years on the BC coast. It involves leaving a large amount of dispersed mature stems on site (>30-40 m² of basal area) such that the stand is still considered 'stocked' after harvesting and thus there is no regeneration obligation. In the Mid Coast TSA, a small amount of this type of harvesting has occurred in the last 5 years and mostly in what was considered to be Non THLB stands. Past harvest areas fitting this description have been depleted from the inventory. In the future, licensees have no plans to do High Retention harvesting so it has not been modeled in this analysis.

May 10, 2010 32

1

<sup>&</sup>lt;sup>17</sup> Actually implemented in conjunction with other nonspatial netdowns such as red/blues listed species. Actual spatial retention values of 19% in DR polygons (10 DR + 4.4 Agg Retn + 0.3 S6 + 1.3 FN + 3.0 red/blue) and 9% in all other polygons (4.4 Agg Retn + 0.3 S6 + 1.3 FN + 3.0 red/blue) were applied throughout the analysis.

## 5.2 Regeneration Assumptions

After harvest, stands in the TSA follow various regeneration regimes depending on originating stand type. Some stand types rely on natural regeneration while others rely on planting or a combination of the two. This section of the data package summarizes the silvicultural management inputs used in the TIPSY growth and yield model for each managed stand AU. Table 31 provides a summary of the inputs used in TIPSY to produce managed stand yield curves. These assumptions were developed by licensee silviculture staff and reflect current regeneration practices for each of the stand types shown.

Table 31. Regeneration Assumptions (TIPSY inputs) Future Managed Stands

| Existing<br>AU# | Regen<br>AU# | Description         | Regen<br>Method                              | Regen Species<br>and Weighting<br>(%)                                                                              |         | Initial<br>Competing<br>Density*<br>(stems/ha) | OAFs | Regen<br>Delay<br>(yrs) | Genetic<br>Worth<br>(Prorated<br>GW) |
|-----------------|--------------|---------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------|------|-------------------------|--------------------------------------|
| 101/121         | 201/221      | Douglas fir good    | Plant 100                                    | Fd <sub>6</sub> Cw <sub>2</sub> Hw <sub>2</sub>                                                                    | >27     | 900                                            | 15/5 | 1                       |                                      |
| 102/122         | 202/222      | Douglas fir medium  | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Fd <sub>6</sub> Cw <sub>2</sub> Hw <sub>2</sub><br>Fd <sub>5</sub> Hw <sub>5</sub>                                 | 20-27   | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 103/123         | 203/223      | Douglas fir poor    | Plant <sub>80</sub><br>Natural <sub>20</sub> | Fd <sub>7</sub> Hw <sub>2</sub> Cw <sub>1</sub><br>Fd <sub>5</sub> Hw <sub>3</sub> Cw <sub>2</sub>                 | <20     | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 104/124         | 204/224      | Cedar good          | Plant <sub>70</sub><br>Natural <sub>30</sub> | Cw <sub>7</sub> Hw <sub>2</sub> Ba <sub>1</sub><br>Cw <sub>5</sub> Hw <sub>4</sub> Ba <sub>1</sub>                 | >23     | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 105/125         | 205/225      | Cedar medium        | Plant <sub>70</sub><br>Natural <sub>30</sub> | Cw <sub>7</sub> Hw <sub>2</sub> Ba <sub>1</sub><br>Hw <sub>5</sub> Cw <sub>5</sub>                                 | >19-23  | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 106/126         | 206/226      | Cedar poor          | Plant <sub>70</sub><br>Natural <sub>30</sub> | Cw <sub>7</sub> Hw <sub>2</sub> Yc <sub>1</sub><br>Cw <sub>4</sub> Hw <sub>4</sub> Yc <sub>2</sub>                 | 15-19   | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 107/127         | 207/227      | Cedar low           | Plant <sub>70</sub><br>Natural <sub>30</sub> | Cw <sub>6</sub> Yc <sub>2</sub> Hw <sub>2</sub><br>Cw <sub>4</sub> Hw <sub>4</sub> Yc <sub>2</sub>                 | <15     | 900<br>4000                                    | 15/5 | 1<br>3                  | Fd – 0.4%<br>Hw – 0%                 |
| 108/128         | 208/228      | Hemlock/balsam good | Natural 100                                  | Hw <sub>7</sub> Ba <sub>2</sub> Cw <sub>1</sub>                                                                    | >22     | 4000                                           | 15/5 | 2                       | Cw - 4.2%                            |
| 109/129         | 209/229      | Hemlock/balsam med  | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw <sub>5</sub> Ba <sub>3</sub> Cw <sub>2</sub><br>Hw <sub>5</sub> Ba <sub>5</sub>                                 | >17-22  | 900<br>4000                                    | 15/5 | 1<br>2                  | Ss - 0%                              |
| 110/130         | 210/230      | Hemlock/balsam poor | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw <sub>6</sub> Ba <sub>2</sub> Cw <sub>2</sub><br>Hw <sub>6</sub> Ba <sub>3</sub> Cw <sub>1</sub>                 | 12.5-17 | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 111/131         | 211/231      | Hemlock/balsam low  | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw <sub>6</sub> Ba <sub>2</sub> Yc <sub>1</sub> Cw <sub>1</sub><br>Hw <sub>6</sub> Ba <sub>3</sub> Yc <sub>1</sub> | <12.5   | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 112/132         | 212/232      | Spruce good         | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Ss₅Ba₄Hw₁<br>Hw₅Ss₄Ba₁                                                                                             | >22     | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 113/133         | 213/233      | Spruce medium       | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Ss <sub>4</sub> Ba <sub>4</sub> Hw <sub>2</sub><br>Hw <sub>4</sub> Ba <sub>3</sub> Ss <sub>3</sub>                 | 15-22   | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 114/134         | 214/234      | Spruce poor         | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Ss <sub>4</sub> Ba <sub>3</sub> Hw <sub>3</sub><br>Hw <sub>6</sub> Ba <sub>2</sub> Ss <sub>2</sub>                 | >15     | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 151             | 251          | Cottonwood          | Natural <sub>100</sub>                       | Ac                                                                                                                 | All     | 5000                                           | 15/5 | 1                       |                                      |
| 152             | 252          | Alder               | Natural 100                                  | Dr                                                                                                                 | All     | 5000                                           | 15/5 | 1                       |                                      |

<sup>\*</sup> This density refers to the number of stems/ha that are competing to be the next crop trees. This number is typically higher than a well spaced number and lower than a total stems number because all competing stems are counted but those in a different layer (or cohort) are not counted.

Table 32. Regeneration Assumptions (TIPSY inputs) Existing Managed Stands

| Existing<br>AU# | Regen<br>AU# | Description             | Regen<br>Method                              | Regen Species<br>and Weighting<br>(%)                                                              |        | Initial<br>Competing<br>Density*<br>(stems/ha) | OAFs | Regen<br>Delay<br>(yrs) | Genetic<br>Worth<br>(Prorated<br>GW) |
|-----------------|--------------|-------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------|--------|------------------------------------------------|------|-------------------------|--------------------------------------|
| 301             | 401          | Douglas-fir-good        | Plant 100                                    | Fd <sub>6</sub> Cw <sub>2</sub> Hw <sub>2</sub>                                                    | >27    | 900                                            | 15/5 | 1                       | 300-series                           |
| 302             | 402          | Douglas-fir-medium/poor | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Fd <sub>6</sub> Cw <sub>2</sub> Hw <sub>2</sub><br>Fd <sub>5</sub> Hw <sub>5</sub>                 | 20-27  | 900<br>4000                                    | 15/5 | 1<br>2                  | Fd - 0%                              |
| 303             | 403          | Douglas-fir-poor        | Plant 80<br>Natural 20                       | Fd <sub>7</sub> Hw <sub>2</sub> Cw <sub>1</sub><br>Fd <sub>5</sub> Hw <sub>3</sub> Cw <sub>2</sub> | <20    | 900<br>4000                                    | 15/5 | 1<br>2                  | Hw - 0%<br>Cw - 0%<br>Ss - 0%        |
| 304             | 404          | Cedar-good              | Plant 80<br>Natural 20                       | Cw <sub>6</sub> Hw <sub>3</sub> Ba <sub>1</sub><br>Cw <sub>6</sub> Hw <sub>3</sub> Ba <sub>1</sub> | >23    | 900<br>4000                                    | 15/5 | 1<br>2                  | 35 - 076                             |
| 305             | 405          | Cedar-medium            | Plant <sub>80</sub><br>Natural <sub>20</sub> | Cw <sub>7</sub> Hw <sub>2</sub> Ba <sub>1</sub><br>Hw <sub>5</sub> Cw <sub>5</sub>                 | >19-23 | 900<br>4000                                    | 15/5 | 1<br>2                  | 400-series                           |
| 306             | 406          | Cedar-poor              | Plant <sub>80</sub><br>Natural <sub>20</sub> | Cw <sub>7</sub> Hw <sub>2</sub> Yc <sub>1</sub><br>Cw <sub>4</sub> Hw <sub>4</sub> Yc <sub>2</sub> | 15-19  | 900<br>4000                                    | 15/5 | 1<br>3                  | Fd – 0.4%                            |
| 307             | 407          | Cedar-low               | Plant <sub>80</sub><br>Natural <sub>20</sub> | Cw <sub>6</sub> Yc <sub>2</sub> Hw <sub>2</sub><br>Cw <sub>4</sub> Hw <sub>4</sub> Yc <sub>2</sub> | <15    | 900<br>4000                                    | 15/5 | 1<br>3                  | Hw - 0%<br>Cw - 4.2%                 |

| Existing<br>AU# | Regen<br>AU# | Description           | Regen<br>Method                              | Regen Species<br>and Weighting<br>(%)                                                                              |         | Initial<br>Competing<br>Density*<br>(stems/ha) | OAFs | Regen<br>Delay<br>(yrs) | Genetic<br>Worth<br>(Prorated<br>GW) |
|-----------------|--------------|-----------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------|------|-------------------------|--------------------------------------|
| 308             | 408          | Hemlock/balsam-good   | Natural 100                                  | Hw <sub>7</sub> Ba <sub>2</sub> Cw <sub>1</sub>                                                                    | >22     | 4000                                           | 15/5 | 2                       | Ss - 0%                              |
| 309             | 409          | Hemlock/balsam-medium | Plant 20<br>Natural 80                       | Hw <sub>5</sub> Ba <sub>3</sub> Cw <sub>2</sub><br>Hw <sub>5</sub> Ba <sub>5</sub>                                 | >17-22  | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 310             | 410          | Hemlock/balsam-poor   | Plant 20<br>Natural 80                       | Hw <sub>6</sub> Ba <sub>2</sub> Cw <sub>2</sub><br>Hw <sub>6</sub> Ba <sub>3</sub> Cw <sub>1</sub>                 | 12.5-17 | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 311             | 411          | Hemlock/balsam-low    | Plant 20<br>Natural 80                       | Hw <sub>6</sub> Ba <sub>2</sub> Yc <sub>1</sub> Cw <sub>1</sub><br>Hw <sub>6</sub> Ba <sub>3</sub> Yc <sub>1</sub> | <12.5   | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 312             | 412          | Spruce-good           | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Ss₅Ba₄Hw₁<br>Hw₅Ss₄Ba₁                                                                                             | >22     | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 313             | 413          | Spruce-medium         | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Ss <sub>4</sub> Ba <sub>4</sub> Hw <sub>2</sub><br>Hw <sub>4</sub> Ba <sub>3</sub> Ss <sub>3</sub>                 | 15-22   | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 314             | 414          | Spruce-poor           | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Ss <sub>4</sub> Ba <sub>3</sub> Hw <sub>3</sub><br>Hw <sub>6</sub> Ba <sub>2</sub> Ss <sub>2</sub>                 | >15     | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 315             | 415          | Hemlock/balsam-medium | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw <sub>4</sub> Cw <sub>4</sub> Ba <sub>2</sub><br>Hw <sub>5</sub> Cw <sub>3</sub> Ba <sub>2</sub>                 | >17-22  | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |

## 5.3 Regeneration delay

Regeneration delay is the time between harvesting and the time when stand regrowth begins. The delay incorporates both the time taken to establish a stand, and the age of seedling stock planted, if applicable. Based on past practices and the anticipated approach going forward, a one year delay for planted stands and a 2-3 year delay for naturally regenerating stands were used. See Table 31 for details.

#### 5.4 Gene resources — use of select seed

Where it is available, the TSA uses select seed (class A seed from orchards) for regeneration because of its superior volume production. This section describes the yield adjustments used in this analysis to account for the use of select seed (i.e. orchard & superior provenance seed with a known genetic gain as measured by Genetic Worth (GW)).

Seed Planning Units (SPU's) are polygon features that geographically delineate the appropriate area of seedling use for stock originating from specific seed orchards throughout the province. Each SPU identifies the area and elevation range in which seedlings of a given orchard may be used in regeneration. The SPUs relevant in the Mid Coast TSA are shown in Table 33. Hemlock is not shown because it is rarely planted. Douglas fir and Cedar are only planted in specific analysis units. The respective area and proportion of the analysis units, the estimates of future genetic worth, and seedling availability from MFR Tree Improvement Branch are provided for each SPU in Table 34. Only a reduced portion of the Seed Planning Units will be effectively regenerated with the respective species. This specific portion for each SPU is defined by the Analysis Units and their regeneration strategy.

Table 33. Seed Planning Units within the Mid Coast TSA (Class A seed)

| Species           | Genetic Class "A"<br>Seed Planning Zone | Elevation Band (m) |  |
|-------------------|-----------------------------------------|--------------------|--|
| Douglas Fir       | Maritime high                           | 700-1200           |  |
| Douglas Fir       | Maritime low                            | 1-700              |  |
| Douglas Fir       | Submaritime low                         | 400-1200           |  |
| Western Red Cedar | Maritime low                            | 1-600              |  |
| Western Red Cedar | Maritime high                           | 600-1500           |  |
| Western Red Cedar | Submaritime low                         | 200-100            |  |

Table 34. Seed Planning Units (Class A Seed) genetic worth and seed availability

| SPU | THLB<br>Area<br>(ha) | Percent of<br>Regeneration<br>Area by<br>Species <sup>(7)</sup> | Genetic<br>Worth<br>Achieved<br>(2006-08 | Percent<br>Class A<br>Seedlings<br>(2006-08 | Planned<br>GW for<br>2009 | Planned Class<br>A Seed<br>Availability for<br>2009 | Projected<br>Future<br>Genetic<br>Worth % | Projected<br>Class A Seed<br>Availability<br>(2015) |
|-----|----------------------|-----------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|-----|----------------------|-----------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|

|            |        |     | Spar) | Spar) |     |       | (2015) |       |
|------------|--------|-----|-------|-------|-----|-------|--------|-------|
| Fdc M High | 47     | 1%  | 0%    | 0%    | 0%  | 0%    | 0%     | 0%    |
| Fdc M low  | 352    | 6%  | 8%    | 50%   | 14% | 35.8% | 17%    | 60.2% |
| Fdc SM low | 4,187  | 71% | 0%    | 0%    | 2%  | 42.8% | 8%     | 85.7% |
| Cw M High  | 9,601  | 7%  | 0%    | 0%    | 0%  | 0%    | 0%     | 0%    |
| Cw M low   | 91,595 | 66% | 2%    | 80%   | 8%  | 97.2% | 12%    | 100%  |
| Cw SM Low  | 22,798 | 16% | 0%    | 0%    | 0%  | 0%    | 0%     | 0%    |

<sup>(1)</sup> This percentage is the area of the analysis units in the THLB that will be planted with some proportion of Douglas fir or cedar, respectively. The rest of the area to complete the 100% considers Class B Seed.

A net GW applicable to each SPU was calculated using the values shown above for 2009 (GW x Avail% x % THLB). For example, Cw M Low has a gain of 8% projected for 2009 and class A seed is expected to be used 80% of the time on 66% of area that will effectible planted with cedar (8 x  $0.8 \times 0.66 = 4.2\%$ ). Current use (2008) of select seed is less than predicted by timelines for 2009 but this was felt to be offset by the increased gains projected into the future (between 2008 and 2015).

These values were then simplified to the species level by prorating the SPU values using THLB area.

<u>Existing managed stands</u> did not receive any adjustment reflecting improved seed use as the majority of stands would not have been established with improved seed. There will be a slight underestimation of timber supply in the future as a small portion of these stands will actually benefit from GW gains.

Future managed stands received the 2009 net GW's for Fdc (0.4%), Cw (4.2%).

Genetic gains were incorporated into the growth and yield curves through TIPSY model functionality. When Cw or Fdc were included in a planted managed stand AU, its associated Net GW was input into TIPSY. This net GW reflects the average genetic gain associated with ALL seedlings of a given species planted in a typical year and is shown in Table 35.

No increase in genetic worth was implemented during the planning horizon. This likely results in an underestimation of long term timber supply but was done because long term projected gains have yet to be proven.

Table 35. Net genetic worth by species to be applied in timber supply model

| Species | Genetic Gains applied in TIPSY For Base Case Future Managed Stands (GW%xAval%) |
|---------|--------------------------------------------------------------------------------|
| Cw      | 4.2%                                                                           |
| Hw      | 0%                                                                             |
| Fdc     | 0.4%                                                                           |

## 5.5 Silviculture History (defining existing managed stands)

For growth and yield modeling, stands are classified into two categories based on their management status: natural/unmanaged stands and managed stands (2<sup>nd</sup> growth). Natural stands typically regenerated with no silviculture treatments that would have ensured full stocking and/or a good distribution of stems. Managed stands have had silviculture treatments and are assumed to be full stocked and well distributed. The area considered managed and natural is summarized in Table 36

Table 36. Managed and natural stand area

| Management<br>Status | Definition                                                     | THLB<br>(ha) |
|----------------------|----------------------------------------------------------------|--------------|
| Natural              | Cw leading >19 yrs and others > 25 yrs                         | 105,999      |
| Managed              | Cw leading <=19 yrs (est 1989) and others <= 25 yrs (Est 1983) | 29,343       |
| Total THLB Area      |                                                                | 135,342      |

## 5.6 Backlog and current not satisfactorily restocked areas (NSR)

Backlog NSR is any area that was denuded prior to 1987 (when basic silviculture became the obligation of licensees) and is not yet fully stocked. There is no backlog NSR remaining in the Mid Coast TSA. All other NSR areas are considered current NSR. Current NSR was assigned to existing managed stand analysis units and any delay in restocking these sites was reflected in the regeneration delays assigned to these analysis units. These sites have either been reforested but are not yet confirmed in the inventory file, or will be reforested because licenses are under a legal obligation to do so.

## 5.7 Incremental Silviculture and Commercial Thinning

In the Mid Coast TSA, approximately 1,000 ha of fertilization occurred in the early 1990's but little to no incremental silvicultural practices have occurred since. Commercial thinning is not occurring or planned.

## 6.0 Timber Harvesting

## 6.1 Minimum Harvestable Age / Merchantability Standards

In order for a stand within the timber supply model to be considered for harvesting, it must achieve a minimum harvest age that ensures it meets reasonable economic criteria and emulates what is generally current practice by forest licensees. Note that these are minimum criteria, not the actual ages at which stands are forecast for harvest. Some stands may be harvested at the minimum thresholds to meet forest-level objectives while other stands may be not be harvested until well past their "optimal" timber production ages due to management objectives for other resource values such as old forest retention requirements, or ungulate winter range.

For this analysis, minimum harvestable ages were defined using the following criteria:

- Existing stands: Minimum volume of 350 m<sup>3</sup>/ha and 45cm dbh (Cw) or 35 cm dbh (others) for the largest 250 trees.
- Future stands: Minimum volume of 350 m³/ha and 45cm dbh (Cw) or 35 cm dbh (others) for the largest 250 trees. Must also be within 90% of the culmination MAI.

These criteria were developed in the Economic Operability project (Forsite 2009) and carried forward here. The diameter thresholds are consistent with TSR2.

The minimum harvest age to be utilized for each analysis unit is defined in Table 37. For a detailed description of all analysis unit definitions, see Table 25.

Table 37. Minimum harvest ages

|                | Existing Stands                |                | Future Stands |                                |                         |                  |  |  |
|----------------|--------------------------------|----------------|---------------|--------------------------------|-------------------------|------------------|--|--|
| AU<br>#        | AU Description                 | Min<br>Harvest | AU#           |                                |                         | n Harvest<br>Age |  |  |
|                |                                | Age            |               |                                | Group Disp<br>Retn Retn |                  |  |  |
| Natural Stands |                                |                |               |                                |                         |                  |  |  |
| 101            | Douglas fir good <=140yrs      | 75             | 201           | Douglas fir good <=140yrs      | 55                      | 55               |  |  |
| 102            | Douglas fir medium <=140yrs    | 90             | 202           | Douglas fir medium <=140yrs    | 65                      | 70               |  |  |
| 103            | Douglas fir poor <=140yrs      | 135            | 203           | Douglas fir poor <=140yrs      | 110                     | 140              |  |  |
| 104            | Cedar good <=140yrs            | 105            | 204           | Cedar good <=140yrs            | 80                      | 75               |  |  |
| 105            | Cedar medium <=140yrs          | 115            | 205           | Cedar medium <=140yrs          | 80                      | 80               |  |  |
| 106            | Cedar poor <=140yrs            | 195            | 206           | Cedar poor <=140yrs            | 90                      | 90               |  |  |
| 107            | Cedar low <=140yrs             | 235            | 207           | Cedar low <=140yrs             | 80                      | 75               |  |  |
| 108            | Hemlock/balsam good <=140yrs   | 65             | 208           | Hemlock/balsam good <=140yrs   | 60                      | 60               |  |  |
| 109            | Hemlock/balsam medium <=140yrs | 85             | 209           | Hemlock/balsam medium <=140yrs | 60                      | 60               |  |  |
| 110            | Hemlock/balsam poor <=140yrs   | 135            | 210           | Hemlock/balsam poor <=140yrs   | 65                      | 65               |  |  |
| 111            | Hemlock/balsam low <=140yrs    | 180            | 211           | Hemlock/balsam low <=140yrs    | 65                      | 65               |  |  |
| 112            | Spruce good <=140yrs           | 60             | 212           | Spruce good <=140yrs           | 60                      | 60               |  |  |

|         | Existing Stands               |                | Future Stands |                               |               |              |  |  |
|---------|-------------------------------|----------------|---------------|-------------------------------|---------------|--------------|--|--|
| AU<br># | AU Description                | Min<br>Harvest | AU#           | AU Description                | Min Ha        |              |  |  |
|         |                               | Age            |               |                               | Group<br>Retn | Disp<br>Retn |  |  |
| 113     | Spruce medium <=140yrs        | 80             | 213           | Spruce medium <=140yrs        | 75            | 75           |  |  |
| 114     | Spruce poor <=140yrs          | 135            | 214           | Spruce poor <=140yrs          | 125           | 150          |  |  |
| 121     | Douglas fir good >140yrs      | 80             | 221           | Douglas fir good >140yrs      | 55            | 60           |  |  |
| 122     | Douglas fir medium >140yrs    | 90             | 222           | Douglas fir medium >140yrs    | 65            | 80           |  |  |
| 123     | Douglas fir poor >140yrs      | 115            | 223           | Douglas fir poor >140yrs      | 100           | 125          |  |  |
| 124     | Cedar good >140yrs            | 115            | 224           | Cedar good >140yrs            | 90            | 85           |  |  |
| 125     | Cedar medium >140yrs          | 135            | 225           | Cedar medium >140yrs          | 80            | 75           |  |  |
| 126     | Cedar poor >140yrs            | 165            | 226           | Cedar poor >140yrs            | 95            | 90           |  |  |
| 127     | Cedar low >140yrs             | 235            | 227           | Cedar low >140yrs             | 110           | 105          |  |  |
| 128     | Hemlock/balsam good >140yrs   | 80             | 228           | Hemlock/balsam good >140yrs   | 60            | 60           |  |  |
| 129     | Hemlock/balsam medium >140yrs | 100            | 229           | Hemlock/balsam medium >140yrs | 65            | 65           |  |  |
| 130     | Hemlock/balsam poor >140yrs   | 125            | 230           | Hemlock/balsam poor >140yrs   | 70            | 65           |  |  |
| 131     | Hemlock/balsam low >140yrs    | 170            | 231           | Hemlock/balsam low >140yrs    | 70            | 70           |  |  |
| 132     | Spruce good >140yrs           | 60             | 232           | Spruce good >140yrs           | 60            | 60           |  |  |
| 133     | Spruce medium >140yrs         | 85             | 233           | Spruce medium >140yrs         | 85            | 80           |  |  |
| 134     | Spruce poor >140yrs           | 120            | 234           | Spruce poor >140yrs           | 110           | 125          |  |  |
| Mana    | ged Stands                    |                |               |                               |               |              |  |  |
| 301     | Douglas-fir-good              | 55             | 401           | Douglas-fir-good              | 55            | 55           |  |  |
| 302     | Douglas-fir-medium/poor       | 65             | 402           | Douglas-fir-medium/poor       | 65            | 75           |  |  |
| 303     | Douglas-fir-poor              | 150            | 403           | Douglas-fir-poor              | 150           | 220          |  |  |
| 304     | Cedar-good                    | 80             | 404           | Cedar-good                    | 80            | 80           |  |  |
| 305     | Cedar-medium                  | 90             | 405           | Cedar-medium                  | 90            | 90           |  |  |
| 306     | Cedar-poor                    | 110            | 406           | Cedar-poor                    | 110           | 110          |  |  |
| 307     | Cedar-low                     | 90             | 407           | Cedar-low                     | 90            | 90           |  |  |
| 308     | Hemlock/balsam-good           | 65             | 408           | Hemlock/balsam-good           | 65            | 65           |  |  |
| 309     | Hemlock/balsam-medium         | 60             | 409           | Hemlock/balsam-medium         | 60            | 65           |  |  |
| 310     | Hemlock/balsam-poor           | 80             | 410           | Hemlock/balsam-poor           | 80            | 75           |  |  |
| 311     | Hemlock/balsam-low            | 80             | 411           | Hemlock/balsam-low            | 80            | 80           |  |  |
| 312     | Spruce-good                   | 60             | 412           | Spruce-good                   | 60            | 60           |  |  |
| 313     | Spruce-medium                 | 75             | 413           | Spruce-medium                 | 75            | 75           |  |  |
| 314     | Spruce-poor                   | 120            | 414           | Spruce-poor                   | 120           | 145          |  |  |
| 315     | Ex Dispersed Retention        | 150            | 415           | Ex Dispersed Retention        | 80            | 80           |  |  |

Managed stands tend to have shortened minimum harvest ages because of the increased yields predicted by the TIPSY model and the site index adjustment (increase) that was applied to Hw and Cw leading stands.

## 6.2 Harvest Priorities / Target Weightings

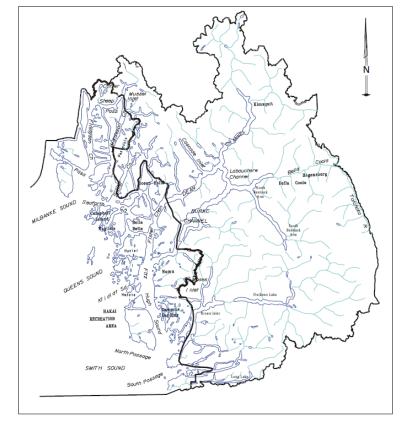
Traditional harvest priorities are not being applied in this analysis. The model being utilized (Patchworks) is a goal seeking heuristic model which dynamically explores many potential solutions in an effort to find the one that best meets user defined goals. Thus, the concept of harvest priorities is not relevant.

Within a goal seeking heuristic model, it is necessary to weight various targets or objectives relative to each other so that solutions reflect the desired outcome. In this analysis, the harvest volume target will be weighted substantially lower than all other targets so that non timber objectives will not be sacrificed to deliver volume. The objective is for harvest volume only to be attractive to the model when all other issues have been addressed (old seral objectives, ungulate winter range objectives, watershed disturbance limits, etc).

Patchworks generates millions of alternative solutions and scores them for how well they achieve the users objectives. As long as the model continues to find better solutions, modeling continues. For this analysis, solutions will be considered final once improvements in the objective function are less than 0.1% in 100,000 iterations.

#### 6.3 Harvest Profiles

The TSR2 determination specified a partition for poor-low hemlock/balsam leading stands (SI<17) and performance monitoring objectives for outer coast stands and non conventional harvest stands. Based on the AAC established in the determination (998,000 m³/yr), at least 200,000 m³/yr (20%) was expected to come from low and poor site hemlock and balsam stands. In addition, at least 59,000 m³/yr (5.9%) was expected to come from Outer Coast stands and 178,000 m³/yr (17.8%) was expected to come from non-conventional harvest areas. As a single stand could belong to all three of these profiles, overlap between them is expected. The AAC reduction that occurred in 2006 proportionately reduced the partition volumes as well (% stayed the same).


For TSR 3 modeling, the amount of harvest in these profiles will be monitored and regulated as necessary to ensure that harvest volumes were not inordinately dependant on these types in any one harvest period. Actual licensee annual reporting submissions to MFR are presented below to illustrate recent performance (Table 38).

| Year | Total Harvest (m³) | Outer Coast<br>Harvest<br>(m³) | Outer<br>Coast<br>(%) | Coast Hembal Hemi |      | Volume ACC<br>(m³) |  |
|------|--------------------|--------------------------------|-----------------------|-------------------|------|--------------------|--|
| 2000 | 882,586            | 27,279                         | 3.1                   | 170,694           | 19.3 | 1,000,000          |  |
| 2001 | 760,656            | 6,267                          | 0.8                   | 191,840           | 25.2 | 998,000            |  |
| 2002 | 618,962            | 19,490                         | 3.1                   | 92,015            | 14.9 | 998,000            |  |
| 2003 | 295,826            | 6,348                          | 2.1                   | 68,178            | 23.0 | 795,000            |  |
| 2004 | 618,491            | 80,794                         | 13.1                  | 108,188           | 17.5 | 795,000            |  |
| 2005 | 906,438            | 34,098                         | 3.8                   | 111,609           | 12.3 | 795,000            |  |
| 2006 | 546,262            | 0                              | 0                     | 118,722           | 21.7 | 768,000            |  |
| 2007 | 595,282            | 119,332                        | 20.0                  | 44,053            | 7.4  | 768,000            |  |
| 2008 | 421,452            | 74,782                         | 17.7                  | 62,266            | 14.8 | 768,000            |  |

Table 38. Recent harvest performance based on licensee annual reporting submissions to MFR

In spite of all the planning uncertainty associated within the TSA in the past 10 vears, performance in the outer coast has been significant with as much as 20% of the harvested volume coming from the area. even though some of the area has not been made available to license holders in the form of chart area – even today some of the Outer Coast has not been assigned to any license holder (but then there are also existing administrative areas have not been utilized). Some of the highest levels of performance have occurred in the last two years (20% in 2007 and 17.7% in 2008). As a result of the new landbase definition reflecting economic operability, new parks, and community forest areas, the area identified as THLB in the outer coast area has the following characteristics:

- It represents 18.9% of the total THLB,
- 75.6% of the area is cedar
- 12.9% of the area is low or poor hemlock
- All of the area was proven to be economic in the economic operability analysis.



Given that not all of the outer coast area is administratively available for harvest activity because it has not been made available to any

Figure 8. Inner and outer coast landbase definition (TSR2)

license holder in the TSA, and the fact that the outer coast stands included in the THLB are part of an economic landbase – the base case will be allowed to have up to 20% of harvest come from the outer coast.

Harvesting in the low/poor site hemlock-balsam partition (SI<17) also represents a significant component of the past harvest; between 7.4 and 25.2 percent, frequently greater than 20%. This is consistent with the TSR2 partition of 20% so this level of contribution will be used again in TSR3.

Non-conventional harvest areas as identified in TSR2 will not be duplicated in TSR3 but an effort will be made to track helicopter harvest volumes over time as defined in the 2009 Mid Coast Operability Project.

## 7.0 Natural Forest Disturbance

It is inevitable that natural disturbances will occur within the forests of the Mid Coast TSA and the implications of these disturbances on forest age classes and volumes are recognized in the timber supply analysis process. Natural disturbances are events caused by factors such as wildfire, wind, landslides, snow press, insects, disease and other forest health considerations. Two approaches to addressing these issues are used during modeling; one on the THLB and one on the remainder of the forested area of the TSA.

#### 7.1 Unsalvaged Losses on the THLB

The purpose of this section is to quantify the average annual volume of timber that, in the future, will be damaged or killed on the THLB and not salvaged or accounted for by other factors. This factor is meant to capture catastrophic natural events like fires. Endemic pest losses are dealt with through factors applied in the growth and yield models as noted below:

**TIPSY:** Operational Adjustment Factor 2 reduces gross volumes to account for losses toward maturity such as decay, and endemic forest health issues like minor infestations.

**VDYP:** The model predicts actual average yields from appropriate inventory ground plots. Endemic losses are inherently recognized in the model data.

Expected non-recoverable losses are summarized in Table 39 and have not changed since TSR2, other than to prorate them down based on the size of the THLB change. The THLB in this analysis is ~70% of the TSR2 THLB so all NRL values have been reduced to 70% of the TSR2 values. This volume was added to the annual harvest target in order to remove this volume from the land base and cause an appropriate amount of stand area to have its age set to zero. The unsalvaged loss volume is not included in reported harvest levels for the TSA.

Table 39. Non-recoverable losses

| Cause of Loss | TSR2 Annual<br>Unsalvaged Losses<br>(m³/yr) | TSR3 Annual<br>Unsalvaged Losses<br>(m³/yr) |  |  |  |
|---------------|---------------------------------------------|---------------------------------------------|--|--|--|
| Insects       | 0                                           | 0                                           |  |  |  |
| Fire          | 7,102                                       | 4,971                                       |  |  |  |
| Windthrow     | 13,000                                      | 9,100                                       |  |  |  |
| Total         | 20,102                                      | 14,071                                      |  |  |  |

It should be noted that a decline in yellow cedar (Yc) stands has been observed along the BC coast since 2004 at specific elevation bands. It is believed to be an endemic issue but is not recognized in the VDYP yield

curves. Insufficient data exists to quantify its impact for inclusion in the unsalvaged losses estimate but it should be considered as an unquantifiable factor at the time of AAC determination.

#### 7.2 Disturbance in the Non-THLB

As forested stands in the non-THLB contribute toward several forest cover objectives (i.e., landscape level biodiversity, visuals, etc.), it is important that the age class distributions in these stands remain consistent with natural processes. By implementing disturbance in these stands, a natural age class distribution can be maintained in the model and a realistic contribution toward seral goals ensured.

The disturbance rate was based on the Range of Natural Variation (RONV) research that is incorporated into the EBM orders (2009). This was necessary to keep the rate of natural disturbance in sync with the old seral retention goals imposed by the EBM orders. Using old seral goals based on RONV studies while implementing disturbance regimes from the Natural Disturbance Types defined in the Biodiversity Guidebook (MFR 1995) would have made it impossible to meet the old seral objectives on the landbase in the long term – even if no harvesting was occurring. In general, the amount of naturally occurring old seral predicted to be on the landbase was much higher under the RONV approach.

The rate of natural disturbance was calculated for each BEC variant/Site Series Surrogate combination using an estimate of the natural amount of old seral that would have occurred in the past (100% RONV numbers from the EBM orders) and the old age definition. An effective rotation age was calculated from the % old from RONV and the old age (250 yrs) definition (Effective rotation age = old age / (1 – proportion old)). This effective rotation age defines the annual rate of disturbance – and indicates that time it takes for an entire area to have been disturbed once. The results are shown in Table 40 and indicate that the rate of stand replacing natural disturbance in these forests is very low – the more typical dynamic is for single trees to die and create gaps that are subsequently filled in by regeneration.

Where a BEC subzone was not present in the EBM order (ESSF, SBPS, SBS, etc), the traditional BEC/NDT disturbance interval was used. This occurred within Tweedsmuir park for the most part and did not impact any LU/BEC variant combinations that contained THLB area.

Once an effective rotation age is known it is then used to define an annual area of disturbance. For example, the CWH vh2 variant is expected to have 97% of its area older than 250 years under natural conditions. This translates into an effective rotation of 7946 years. With 189,124 ha in this variant, it would take 24 ha to be disturbed each year to turn over the entire area within 7946 yr. Because of this very long duration, we would expect stands to renew themselves internally through gap replacement strategies, but the 24 ha per year of stand replacement was also modeled.

The area target was achieved in the modeling by randomly selecting stands (without replacement) to be disturbed in each period and then hardwiring this into the model. Stands of all ages had equal opportunity to be disturbed.

Table 40. Calculation of area to be disturbed annually in forested non-THLB by BEC(variant)/NDT

| BEC | Variant  | NDT | Disturbance<br>Interval (yrs) | "OLD"<br>Defn<br>(yrs) | % Area > OLD* | Effective<br>Rotation Age<br>(yrs)** | Contributing<br>Non-THLB<br>Area (ha) | Annual Area<br>Disturbed (ha)<br>(area / rot age) |
|-----|----------|-----|-------------------------------|------------------------|---------------|--------------------------------------|---------------------------------------|---------------------------------------------------|
| MH  | MH wh 1  | 1   | RONV                          | 250                    | 97%           | 8,333                                | 2,922                                 | 0                                                 |
| MH  | MH mm 1  | 1   | RONV                          | 250                    | 86%           | 1,830                                | 23,209                                | 13                                                |
| MH  | MH mm 2  | 1   | RONV                          | 250                    | 84%           | 1,540                                | 37,172                                | 24                                                |
| CWH | CWH vh 1 | 1   | RONV                          | 250                    | 97%           | 7,856                                | 16,097                                | 2                                                 |
| CWH | CWH vh 2 | 1   | RONV                          | 250                    | 97%           | 7,946                                | 189,124                               | 24                                                |
| CWH | CWH vm 1 | 1   | RONV                          | 250                    | 88%           | 2,043                                | 119,995                               | 59                                                |
| CWH | CWH vm 2 | 1   | RONV                          | 250                    | 89%           | 2,189                                | 64,636                                | 30                                                |
| CWH | CWH vm 3 | 1   | RONV                          | 250                    | 84%           | 1,591                                | 30,242                                | 19                                                |
| CWH | CWH ds 2 | 2   | RONV                          | 250                    | 68%           | 790                                  | 25,068                                | 32                                                |

| CWH   | CWH ms 2 | 2 | RONV | 250 | 74% | 979   | 64,292  | 66    |
|-------|----------|---|------|-----|-----|-------|---------|-------|
| CWH   | CWH ws 2 | 2 | RONV | 250 | 85% | 1,616 | 57,414  | 36    |
| ESSF  |          | 2 | 200  | 250 | 29% | 350   | 82,622  | 236   |
| MS    |          | 3 | 150  | 140 | 39% | 231   | 15,308  | 66    |
| SBPS  |          | 3 | 100  | 140 | 25% | 186   | 56,732  | 305   |
| SBS   |          | 3 | 125  | 140 | 33% | 208   | 83,106  | 400   |
| IDF   |          | 4 | 250  | 250 | 37% | 395   | 19,954  | 50    |
| Total |          |   |      |     |     |       | 890,489 | 1,361 |

<sup>\*</sup> From RONV or calculated: % area old = exp (-[old age / disturbance interval]), \*\* Effective rotation age = old age / (1 - % area old)

## 8.0 Integrated Resource Management

This section of the document describes the range of timber and non-timber management objectives that occur within the Mid Coast TSA and how they will be addressed in the timber supply model. The most common method of inclusion is through the application of forest cover requirements.

Forest cover requirements can:

- Limit disturbance in an area by limiting the amount of forest that can be younger than a specific age (or shorter than a specific height);
- Maintain specific stand types on the land base by ensuring that at least a specified amount of forest older than a certain age (or taller than a certain height) is retained at all times;

Forest cover requirements from several different resource objectives can occur in a common area and result in overlapping constraints within the TSA (e.g. visual constraints inside a community watershed). Each requirement is evaluated independently to ensure that the harvesting of a specific stand does not violate any forest cover requirements.<sup>18</sup>

A summary of all non timber management issues and modeling approaches is provided in Table 41 below. Detail on each can be found in either the netdown section of this document or in the remainder of this section.

| Table 41. | Summary | v of Management | Issues and Mo | delling Assumptions |
|-----------|---------|-----------------|---------------|---------------------|
|-----------|---------|-----------------|---------------|---------------------|

| Resource Issue          | Modeling Approach                                                                                                                                                                |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cutblock Size/Adjacency | Maximum of 25% < 3m tall. Applied to the THLB within each LU using height curves specific to each AU.                                                                            |
| Visuals                 | Preservation and Retention VQO's: Dispersed retention silviculture system modeled in place of maximum disturbance limits.                                                        |
|                         | Partial Retention and Modification VQO's: Maximum disturbance limits applied by VQO and VAC to PFLB portion of each VEG polygon. VEG height defined by avg slope of VQO polygon. |
| Community Watersheds    | Maximum of 1% of forested area logged / year (10% every 10 yrs).                                                                                                                 |
| Black Tailed Deer       | Minimum of 25% > 141 yrs old within 80 yrs for all LU's. Specific LU's have reduced                                                                                              |
|                         | constraints to be applied for first 80 yrs (either 20%>141 yrs or 20%>121 yrs). To be met                                                                                        |
|                         | within the PFLB of the mapped habitat areas in each LU.                                                                                                                          |
| Mountain Goat           | Reserve 90% of identified habitat areas (see netdown section 3.3.9).                                                                                                             |
| Grizzly Bear WHAs       | Reserve legally established WHA's (see netdown section 3.3.8).                                                                                                                   |
| Sandhill Crane WHAs     | To be addressed with 1% IWMS budget at time of determination.                                                                                                                    |
| Marbled Murralet WHAs   | To be addressed with 1% IWMS budget at time of determination.                                                                                                                    |
| Tailed Frog WHA's       | To be addressed with 1% IWMS budget at time of determination.                                                                                                                    |
| Goshawk WHA's           | To be addressed with 1% IWMS budget at time of determination.                                                                                                                    |

<sup>&</sup>lt;sup>18</sup> Where a minimum amount of forest is required and does not exist, some harvesting may still occur if there are any stands old enough for harvest once the oldest available stands have been set aside to meet the objective.

May 10, 2010 41

-

| Resource Issue                                                                                                                                             | Modeling Approach                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Karst                                                                                                                                                      | Assumed to be addressed within the existing netdowns and/or the stand level retention budget (Obj. 16).                                                                                                                                                                                                                                                                                         |
| Recreation                                                                                                                                                 | Spatial netdown - see section 3.3.11.                                                                                                                                                                                                                                                                                                                                                           |
| EBM Obj. 3: FN Traditional Forest Resources                                                                                                                | 1,500 m <sup>3</sup> /yr assumed to be harvested outside of the AAC - added as NRL volume.                                                                                                                                                                                                                                                                                                      |
| EBM Obj. 4: FN Traditional Heritage Features EBM Obj. 5: Culturally Modified Trees EBM Obj. 6: Monumental Cedar EBM Obj. 7: Stand Level Retention of Cw/Yc | Together, all four objectives are assumed to have a incremental 1.3% impact on THLB. This is in additional to the stand level retention and red/blue listed species impacts discussed below and all other spatial netdowns. Implemented as an aspatial area retention factor in all THLB polygons.                                                                                              |
| EBM Obj. 8: Important<br>Fisheries Watersheds                                                                                                              | ECA values assessed on the forested portion of each watershed identified in the SCC and NCC Order Schedules. ECA limited to a maximum of 20%. Recovery curves from the 1999 CWAP guidebook were used (function of stand ht).                                                                                                                                                                    |
| EBM Obj. 9: High Value Fish<br>Habitat                                                                                                                     | Spatial netdown - see section 3.3.12.1.                                                                                                                                                                                                                                                                                                                                                         |
| EBM Obj. 10: Non HVFH<br>Aquatic Habitat                                                                                                                   | Spatial netdown - see section 3.3.12.2.                                                                                                                                                                                                                                                                                                                                                         |
| EBM Obj. 11: Forested<br>Swamps                                                                                                                            | Assumed to be addressed within the stand level retention budget (Obj. 16), section 3.3.12.3.                                                                                                                                                                                                                                                                                                    |
| EBM Obj. 12: Upland Streams                                                                                                                                | FRPA riparian removed spatially (netdown section 3.3.10) plus the forested portion of the upland stream area in each watershed was limited to 30% < 9m tall (i.e. hyrdologically recovered).  SCC Order: applied only in watersheds identified in Schedule 3 (Important Fisheries) NCC Order: applied in all watersheds (Important Fisheries + MoE 3 <sup>rd</sup> Order WS's).                 |
| EBM Obj. 13: Active Fluvial Units                                                                                                                          | Spatial netdown - see section 3.3.12.4.                                                                                                                                                                                                                                                                                                                                                         |
| EBM Obj. 14: Landscape Level<br>Biodiversity                                                                                                               | A minimum amount of old forest was retained in the productive forest of each LU/SSS combination. Amounts were specified in Schedule 4 of the EBM orders. The amount of mid seral forest in each LU/SSS combination was also limited to 50%.                                                                                                                                                     |
| EBM Obj. 15: Red/Blue Listed Plant Communities                                                                                                             | Assumed to have a net 3% impact on THLB. Implemented as an aspatial area retention factor in all THLB polygons (section 8.5.13).                                                                                                                                                                                                                                                                |
| EBM Obj. 16: Stand Level<br>Retention                                                                                                                      | The 15% requirement is assumed to have a net 4.4% impact on THLB. Combined with the FN EBM objectives, EBM Red/Blue impact, and S6 riparian impact, the total stand level volume reduction is 9% (1.3 + 3.0 + 4.4 + 0.3). Implemented as an aspatial area retention factor in all THLB polygons (section 8.5.14). An additional 10% was retained in polygons managed using dispersed retention. |
| EBM Obj. 17: Grizzly Bear<br>Habitat                                                                                                                       | Spatial netdown - see section 8.5.15.                                                                                                                                                                                                                                                                                                                                                           |

Non timber objectives addressed through forest cover constraints are discussed in detail below.

## 8.1 Cutblock Size and Adjacency

Green-up requirements specify that a logged block must achieve a specific condition called green-up before adjacent areas can be logged. Green-up refers to the average height of the regenerating forest reaching a specified target. Green-up requirements can often be waived if licensees manage for patch size distributions consistent with biodiversity objectives as described in the Landscape Unit Planning Guide (MFR/MoE 1999). Modeling of green-up requirements was done using forest level objectives, as opposed to block specific objectives, because this was consistent with the operational flexibility afforded by patch size management.

The amount of THLB area less than 3m in height was limited to 25% within each landscape unit (refer to Table 42). This is consistent with the objective applied in TSR 2.

Table 42. Green-up requirements

| Management Zone                     | Green-up<br>Requirement | Modeled Green-up<br>Constraint | Area to which it applies |  |  |
|-------------------------------------|-------------------------|--------------------------------|--------------------------|--|--|
| Integrated Resource Management Zone | 3 m tall trees          | Max 25% < 3m within each LU    | THLB area within each LU |  |  |

#### 8.2 Visual resources

The management of visual resources is based on legally established Visual Quality Objectives (VQO's) assigned to specific areas of the land base. The four VQO ratings considered in this analysis were preservation (P), retention (R), partial retention (PR), and modification (M). Dispersed retention harvesting was implemented in all Preservation and Retention VQO polygons (with associated harvest yield reductions) in order to address the visual concerns on these units. No further constraints were applied to these VQO polygons.

Partial Retention and Modification VQO's had maximum allowable disturbance percentages applied as per Table 43 below. These values reflect higher allowable disturbance limits when VQO polygons have high Visual Absorption Capability (VAC) ratings.

Table 43. Modelling of visual management

| VQO | Maximum allowable disturbance (%) |        |         |  |  |  |  |  |  |  |
|-----|-----------------------------------|--------|---------|--|--|--|--|--|--|--|
|     | VAC = L                           | VAC= M | VAC = H |  |  |  |  |  |  |  |
| Р   | 0.0%                              | 0.5%   | 1%      |  |  |  |  |  |  |  |
| R   | 1%                                | 3%     | 5%      |  |  |  |  |  |  |  |
| PR  | 5%                                | 10%    | 15%     |  |  |  |  |  |  |  |
| M   | 15%                               | 20%    | 25%     |  |  |  |  |  |  |  |

Visually effective green-up (VEG) height requirements vary by slope class as per Table 44. An average slope class was calculated for each VQO-VAC polygon. The average slope defines the required tree height (and age) to reach visually effective greenup. This VEG height was used to model height based disturbance limits within each VQO polygon. Age to reach greenup heights were derived for each AU and used in the model.

Table 44. Visually Effective Green-up (VEG) heights and ages by slope class

| Slope (%)   | 0-5 | 6-10 | 11-15 | 16-20 | 21-25 | 26-30 | 31-35 | 36-45 | 46-50 | 51-55 | 56-60 | 60+ |
|-------------|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| Tree Ht (m) | 3   | 3.5  | 4     | 4.5   | 5     | 5.5   | 6     | 6.5   | 7     | 7.5   | 8     | 8.5 |
| Derived Age | 6   | 7    | 9     | 10    | 11    | 13    | 14    | 15    | 16    | 17    | 18    | 19  |

The area impacted by visual constraints is summarized below.

Table 45. Areas with visual quality objectives

| VQO   | VAC | Forested<br>Non THLB Area (ha) | THLB Area<br>(ha) | Total PFLB Area (ha) |
|-------|-----|--------------------------------|-------------------|----------------------|
|       | L   | 531                            | 197               | 729                  |
| Р     | M   | 49                             | -                 | 49                   |
|       | Н   | -                              | ı                 | -                    |
|       | L   | 16,110                         | 3,948             | 20,057               |
| R     | M   | 7,573                          | 1,250             | 8,823                |
|       | Н   | 142                            | 43                | 186                  |
|       | L   | 33,506                         | 9,202             | 42,708               |
| PR    | М   | 29,854                         | 8,018             | 37,873               |
|       | Н   | 1,483                          | 249               | 1,732                |
|       | L   | 21,851                         | 9,345             | 31,196               |
| M     | М   | 32,083                         | 8,701             | 40,784               |
| Н     |     | 2,702                          | 682               | 3,384                |
| Total |     | 145,886                        | 41,634            | 187,520              |

## 8.3 Community Watersheds

Community watersheds are managed by limiting the amount of disturbance that can occur in each year. As in TSR 2, harvesting will be limited to a maximum of 1% of the forested area per year – modeled as a maximum 10% per decade. This translates into the following maximum annual harvests shown in Table 46.

Table 46. Harvest limits applied to community watersheds

| Community Watershed     | Total Area<br>(ha) | PFLB Area<br>(ha) | THLB Area<br>(ha) | 1% of PFLB<br>Area (ha) | 10% of PFLB<br>Area (ha) |
|-------------------------|--------------------|-------------------|-------------------|-------------------------|--------------------------|
| 910.001                 | 25                 | 20                | -                 | 0.2                     | 2                        |
| 910.003 (Martin River)  | 2,204              | 718               | 106               | 7.2                     | 72                       |
| 910.004 (Snootli Crk)   | 3,847              | 657               | 103               | 6.6                     | 66                       |
| 910.005 (Tastsquan Crk) | 2,795              | 668               | 47                | 6.7                     | 67                       |
| CAM.001                 | 227                | 100               | 39                | 1.0                     | 10                       |
| Total                   | 9.097              | 2.163             | 295               |                         |                          |

## 8.4 Black Tailed Deer Winter Range

In February 2007, a GAR order was introduced for black tailed deer in the Mid Coast TSA (U-5-005) and it identified specified areas where habitat requirements must be met. Since these cover requirements reflect current management of deer winter range in this TSA, they were applied in the base case. Modeling applied a cover constraint to the specified area in each LU as per the GAR order. Table 47 summarizes the cover constraints applied.

Table 47. Summary of cover constraints for Black Tailed Deer by Landscape Unit

| Landscape Unit                                                                                                                   | Minimum Mature Forest<br>Cover Requirements for first<br>80 years | Minimum Mature Forest Cover Requirements after 80 years |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|
| Kilbella/Chuckwalla, Sumquolt, Lower Kimsquit                                                                                    | 20% ≥ 141 years                                                   | 25% ≥ 141 years                                         |
| Clayton, Machmell, Nusatsum, Salloompt, Sheemahant,<br>South Bentinck, Smitley/Noeick, Taleomey/Asseek, Upper<br>Kimsquit, Clyak | 20% ≥ 121 years                                                   | (Implemented in year 40 to ensure target is met by      |
| All other LU's                                                                                                                   | 25% ≥ 141 years                                                   | year 80)                                                |

<sup>\*</sup> Order also indicates that the crown closure must be ≥ 56% and ≤85% and have a leading species of either Douglas-fir, Sitka spruce, or hemlock. It was not possible to assess crown closure or leading species as part of constraints in the model.

The areas impacted by black tailed deer constraints are shown below in Table 48.

Table 48. Areas impacted by black tailed deer cover constraints

| Landscape Unit      | Forested      | THLB Area | PFLB Area |
|---------------------|---------------|-----------|-----------|
| Lanuscape Onit      | Non THLB (ha) | (ha)      | (ha)      |
| Ape                 | 0.2           | 0         | 0.2       |
| Atnarko             | 4             | 0         | 4         |
| Bella Coola         | 595           | 256       | 851       |
| Braden              | 2,490         | 982       | 3,472     |
| Clayton             | 311           | 262       | 573       |
| Clyak               | 1,069         | 2,405     | 3,474     |
| Crag                | 478           | 0         | 478       |
| Dean                | 2,668         | 264       | 2,931     |
| Don Peninsula       | 714           | 954       | 1,668     |
| Doos/Dallery        | 412           | 227       | 639       |
| Draney              | 394           | 455       | 849       |
| Ellerslie           | 2,480         | 763       | 3,243     |
| Evans               | 46            | 42        | 89        |
| Johnston            | 24            | 24        | 47        |
| Jump Across         | 1,230         | 104       | 1,333     |
| Kilbella/Chuckwalla | 1,616         | 903       | 2,519     |
| Kilippi             | 3             | 41        | 44        |
| King Island         | 1,618         | 1,343     | 2,961     |
| Kwatna/Quatlena     | 1,341         | 1,105     | 2,446     |

| Landacana Unit     | Forested      | THLB Area | PFLB Area |
|--------------------|---------------|-----------|-----------|
| Landscape Unit     | Non THLB (ha) | (ha)      | (ha)      |
| Labouchere         | 1,915         | 749       | 2,664     |
| Lower Kimsquit     | 2,103         | 1,626     | 3,728     |
| Machmell           | 758           | 711       | 1,470     |
| Nascall            | 1,703         | 109       | 1,812     |
| Neechanz           | 425           | 421       | 846       |
| Nekite             | 2,431         | 1,084     | 3,514     |
| Nootum/Koeye       | 3             | 0         | 3         |
| Nusatsum           | 181           | 0         | 181       |
| Owikeno            | 1,394         | 354       | 1,747     |
| Roscoe             | 2,283         | 270       | 2,553     |
| Saloompt           | 885           | 821       | 1,705     |
| Sheemahant         | 1,213         | 1,296     | 2,509     |
| Sheep Passage      | 3,854         | 609       | 4,462     |
| Smitley/Noeick     | 240           | 510       | 750       |
| Smokehouse         | 1,834         | 930       | 2,764     |
| South Bentinck     | 44            | 0         | 44        |
| Sumquolt           | 927           | 146       | 1,073     |
| Sutslem/Skowquiltz | 2,859         | 116       | 2,975     |
| Swindle            | 318           | 14        | 332       |
| Taleomey/Asseek    | 226           | 285       | 511       |
| Twin               | 438           | 320       | 758       |
| Upper Kimsquit     | 1,845         | 1,273     | 3,117     |
| Washwash           | 672           | 53        | 724       |
| Young              | 26            | 0         | 26        |
| Total              | 46,067        | 21,823    | 67,890    |

## 8.5 Ecosystem Based Management (EBM) Objectives

Land use orders have been made legal for the South Central Coast and Central and North Coast (March 27, 2009). These orders define land use objectives that implement Ecosystem Base Management (EBM) on the central and north coast of BC and both apply to portions of the Mid Coast TSA (Figure 3 and Table 49). The integration of these objectives into the Mid Coast TSR3 process is discussed in the following sections. The full legal text of the EBM orders can be found here: http://ilmbwww.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/index.html

Table 49. Ministerial order areas for the Mid Coast TSA

| Ministerial<br>Order Area | Forested non THLB (ha) | THLB *<br>(ha) | Total Productive Forest (ha) |
|---------------------------|------------------------|----------------|------------------------------|
| CNC                       | 471,182                | 95,463         | 566,646                      |
| SCC                       | 419,306                | 39,879         | 459,185                      |
| Total                     | 890,489                | 135,343        | 1,025,831                    |

<sup>\*</sup> Spatial THLB area and does not include TL reversions.

It should be noted that proposed amendments to these EBM Orders were made public in December 2008 and were open to review and comment until Feb 16, 2009. These amendments are recognized here as the current practice in the TSA.

#### 8.5.1 EBM Objective 3 – First Nations Traditional Forest Resources

The intent of this objective is to provide for the maintenance of forest resources traditionally used by First Nations for food, social, or ceremonial purposes. This can include merchantable timber and based on the fact that First Nations can access volume without paying stumpage through Free Use Permits. For the six bands within the TSA (Gwa'sala-'Nakwaxda'xw, Heiltsuk, Kitasoo, Nuxalk, Ulkatcho and Wuikinuxv) a total of 1,500 m³/year was assumed to be harvested within the THLB and in excess of the approved AAC. Additonal volume may also be logged in non THLB areas (parks, riparian, etc) but this does not need to be reflected in the anlaysis. The volume expected to be removed from the THLB was added to the non recoverable losses and

logged in the model on top of the AAC request. This volume also helps to address EBM Objectives 6 and 7 below.

#### 8.5.2 EBM Objective 4 – First Nations Traditional Heritage Features

"The intent of this objective is to provide for the protection of defined First Nation's traditional heritage features that are of continued importance to the First Nation within areas proposed for forest development activities. The objective directs licensees to share information and work with First Nations to protect traditional heritage features." (SCC and CNC Background and Intent Document – April 18 2008)

This objective was addressed through non-spatial netdowns to the THLB (see section 3.4.1). Non spatial netdowns were used because they represent a portion of each of the polygon used during modeling.

#### 8.5.3 EBM Objective 5 – Culturally Modified Trees

"The intent of this objective is to provide for the identification and protection of culturally modified trees that are of continuing importance to First Nations. The objective directs licensees to share information and work with First Nations to identify and protect culturally modified trees within area proposed to be altered or harvested and to reserve culturally modified tree areas where practicable." (SCC and CNC Background and Intent Document – April 18 2008)

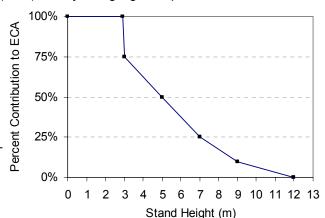
This objective was addressed through non-spatial netdowns to the THLB (see section 3.4.1).

#### 8.5.4 EBM Objective 6 – Monumental Cedar

"The intent of this objective is to provide for the maintenance of monumental cedar for First Nations use. The South Central Coast objective directs licensees to share information and collaborate with First Nations to maintain a sufficient volume of monumental cedar to support present and future cultural use. The Central and North Coast objective directs licensees to share information and work with First Nations to identify and protect monumental cedar within areas proposed to be altered or harvested and to reserve monumental cedar areas where practicable." (SCC and CNC Background and Intent Document – April 18 2008)

This objective was addressed through non-spatial netdowns to the THLB (see section 3.4.1).

#### 8.5.5 EBM Objective 7 – Stand Level Retention of Cw/Yc


"The intent of this objective is to ensure sufficient Western red and Yellow cedar is maintained to support First Nation's present and future cultural and social uses." (SCC and CNC Background and Intent Document – April 18, 2008)

This objective was addressed through non-spatial netdowns to the THLB (see section 3.4.1).

#### 8.5.6 EBM Objective 8 – Important Fisheries Watersheds

The intent of this objective is to ensure forest development activities do not negatively impact watershed health and/or fish habitat in important fisheries watersheds. Important fisheries watersheds are identified in Schedule 2 of the SCC Order and Schedule 3 of the CNC Order, but are not meant to capture small watersheds composed of S5 and S6 streams flowing directly into the ocean. Identified Important Fisheries Watersheds are to be managed using the concept of Equivalent Clearcut Area (ECA) and hydrologic greenup to limit the amount of

disturbance within these watersheds. When evaluated on the forested portion of each watershed area, ECA's are to be kept at <20%. For TSR3 modeling, stands are assumed to recover as per the recovery curve shown below. This curve was adapted from the Coastal Watershed Assessment Procedures Guidebook (v2.1 Apr 1999).



The graph shows that as long as disturbed areas are below 3m in height, they are considered 100% 'clearcut' while only 50% of an area with a height of 5m is considered 'clearcut'.

Modeling applied a maximum 20% ECA to the forested portion of each watershed in Schedule 2 of the SCC Order and Schedule 3 of the CNC Order. Stand height curves assigned to each stand type (AU) were used to calculate ECA percents dynamically in each period for comparison to the target.

The areas impacted by Important Fisheries Watershed constraints are shown below (Table 50).

Table 50. Areas impacted by Important Fisheries Watershed constraints

| Ministerial Order Area | Forested<br>Non THLB (ha) | THLB<br>(ha) | PFLB Area<br>(ha) |
|------------------------|---------------------------|--------------|-------------------|
| CNC                    | 228,544                   | 53,853       | 282,397           |
| SCC                    | 95,057                    | 13,283       | 108,340           |
| Total                  | 323,601                   | 67,136       | 390,737           |

#### 8.5.7 EBM Objective 9 – High Value Fish Habitat (HVFH)

HVFH was treated as a spatial netdown from the THLB (see section 3.3.12.1)

#### 8.5.8 EBM Objective 10 – Aquatic Non High Value Fish Habitat

Aquatic Non-HVFH was treated as a spatial netdown from the THLB (see section 3.3.12.2)

#### 8.5.9 EBM Objective 11– Forested Swamps

The intent of this objective is to maintain the natural ecological function of forested swamps by managing forests that occur adjacent to these areas. As these are rare in coastal BC, it has been assumed that they can be addressed within the impacts attributed to stand level retention strategies (see section 3.3.12.3).

#### 8.5.10 EBM Objective 12 – Upland Streams

The intent of this objective is to maintain the natural ecological function of upland streams and to provide for the maintenance of hydrological and ecological processes within specific watersheds. The objective does not require management of every small upland stream, but does require that functional riparian forest exist on at least 70% of upland portions of watersheds.

Upland streams are to be managed in watersheds identified in Schedule 2 of the SCC order and all watersheds (min 3<sup>rd</sup> order) in the CNC order. Watershed boundaries beyond those mapped in Schedule 3 for the CNC area were obtained from: <a href="http://ftpnan.env.gov.bc.ca/pub/outgoing/dist/Coast Implementation/EBM WG/Data/watersheds/">http://ftpnan.env.gov.bc.ca/pub/outgoing/dist/Coast Implementation/EBM WG/Data/watersheds/</a> and represent 3rd order or larger watersheds.

Within the relevant watersheds, sufficient functional riparian forest was maintained in upland portions of the watersheds by allowing a maximum of 30% of the upland forest area to be below the hydrologically effective greenup height of 9 m. This height comes from the Coastal Watershed Assessment Procedure guidebook which states that 9 meter tall stands are assumed to be 90% hydrologically recovered (maximum recovery shown in the table).

Upland forest is the portion of the watershed occupied by upland streams. For the analysis this was assumed to be forested areas with a >5% slope outside HVFH, Aquatic Non HVFH, and Active Fluvial areas. This amounted to 97,542 ha in the SCC and 397,925 ha in the CNC (270,539 ha FSW and 127,386 ha other watersheds) as shown in Table 51. This constraint was applied to watersheds with a minimum of 100 ha of upland forest, reducing the original area by 1,735 ha (0.35%), from 495,467 ha to 493,732 ha.

Table 51. Areas managed for upland streams

| Ministerial<br>Order Area | Important<br>Fisheries<br>Watersheds | Forested<br>Non THLB (ha) | THLB<br>(ha) | PFLB Area<br>(ha) |
|---------------------------|--------------------------------------|---------------------------|--------------|-------------------|
| CNC                       | Yes                                  | 216,992                   | 53,547       | 270,539           |

|       | No       | 105,004 | 22,382 | 127,386 |
|-------|----------|---------|--------|---------|
|       | Subtotal | 321,996 | 75,929 | 397,925 |
| SCC   | Yes      | 84,389  | 13,153 | 97,542  |
| Total |          | 406,386 | 89,082 | 495,467 |

<sup>\*</sup> The area of the Important Fisheries Watersheds is smaller than in Table 50 because of the slope and riparian exclusions.

#### 8.5.11 EBM Objective 13 – Active Fluvial Units

This objective is present in both the Central and North Coast Order (CNC) and the South Central Coast Order (SCC). The objective intends to maintain the integrity and natural ecological function of active fluvial units (floodplains). Protection will be achieved though the application of a spatial netdown to the THLB (section 3.3.12.4).

#### 8.5.12 EBM Objective 14 – Landscape Level Biodiversity

The intent of this objective is to ensure that a specified amount of forest is maintained in old seral condition in each ecosystem surrogate (TEM mapping not available) based on the relative rarity of the surrogate and the range of natural variation. The CNC and SCC orders define old forest as a stand of trees 250 years or older. To represent this objective, a constraint was applied that maintained a minimum amount of old forest in each Site Series Surrogate (SSS)<sup>19</sup> by LU as per Schedules 4, 4b, 4c, 4d (SCC) and 4, 4b, 4c (CNC) of the EBM orders. These targets were limited to the units with at least 1 ha of THLB in order to simplify modeling. In LU/SSS units where deficits occurred, recruitment was handled on an oldest first basis (no consideration of land base type). A table of all units with areas and targets can be found in Appendix B. There are likely to be units managed to the "risk-managed" targets but we do not know which ones or when this will occur yet – so the plan is to do a sensitivity analyses with the "risk-managed" targets to get an idea of the level of impact.

In addition, the amount of mid seral forest in each LU/SSS was explicitly limited to 50% using accounts that track this seral stage. Mid seral is defined as:

CWH: 40-80 years oldESSF: 40-120 years oldMH: 40-120 years old

#### 8.5.13 EBM Objective 15 – Red and Blue Listed Plant Communities

The intent for this objective is to protect and maintain the abundance and distribution of existing rare, threatened and endangered ecosystems. All occurrences of red listed plant communities are to be protected, while at least 70% of blue listed plant communities are to be protected.

This objective was addressed through aspatial netdowns to the THLB (see section 3.4.2)

#### 8.5.14 EBM Objective 16 – Stand Level Retention

The intent of this objective is to maintain forest structure and habitat elements at the stand level. Both the SCC and CNC orders require a minimum of 15% of each cutblock to be retained, where 50% of this retention should be internal to the cutblock if it's over 15 ha.

This issue was addressed though the application of aspatial netdowns to the THLB (see section 3.4.3).

#### 8.5.15 EBM Objective 17 – Grizzly Bear Habitat

The intent of this objective is to support the long term viability of this regionally important species through the establishment of spatial reserves that work toward maintaining grizzly bear habitat.

May 10, 2010 48

.

<sup>&</sup>lt;sup>19</sup> Site Series Surrogate (SSS) are groupings of stand types within BEC variants. There are 13 potential stand groupings that can occur within each BEC variant that are a function of leading species and site index. For example, Stand type#1 = Fd leading with SI > 27.

Protection of identified habitat will be achieved through the application of a spatial netdown to the THLB (see section 3.3.13).

## 9.0 Timber Supply Modeling

#### 9.1 Timber Supply Model

For forecasting and analysis, the PATCHWORKS<sup>TM</sup> modeling software will be used. This suite of tools is sold / maintained by Spatial Planning Systems Inc. of Deep River, Ontario (Tom Moore - www.spatial.ca).

Patchworks is a fully spatial forest estate model that can incorporate real world operational considerations into a strategic planning framework. It is unique in its ability to dynamically assess spatial relationships during modeling and adapt solutions to achieve spatial objectives. It utilizes a goal seeking approach and an optimization heuristic to schedule activities across time and space in order to find a solution that best balances the targets/goals defined by the user. Targets can be applied to any aspect of the problem formulation. For example, the solution can be influenced by issues such as mature/old forest retention levels, young seral disturbance levels, patch size distributions, conifer harvest volume, growing stock levels, snag densities, CWD levels, ECA's, specific mill volumes by species, road building/hauling costs, delivered wood costs, net present values, etc. Patchworks continually generates alternative solutions until the user decides a stable solution has been found. Solutions with attributes that fall outside of specified ranges (targets) are penalized and the goal seeking algorithm works to minimize these penalties – resulting in a solution that reflects the user's objectives and priorities.

Patchworks' flexible interactive approach is unique in several respects:

- Patchworks' interface allows for highly interactive analysis of trade-off's between competing sustainability goals.
- Patchworks integrates operational-scale decision-making within a strategic-analysis environment: realistic
  spatial harvest allocations can be optimized over long-term planning horizons. Patchworks can
  simultaneously evaluate forest operations and log transportation problems using a multiple-product to
  multiple-destination formulation. The model can identify in precise detail how wood will flow to mills over a
  complex set of road construction and transportation alternatives.
- Allocation decisions can be made considering one or many objectives simultaneously and objectives can be weighted for importance relative to each other (softer vs. harder constraints).
- Allocation decisions can include choices between stand treatment types (clearcut vs. partial cut, fertilization, rehabilitation, etc).
- Unlimited capacity to represent a problem only solution times limit model size.
- Fully customizable reporting on economic, social, and environmental conditions over time. Reports are built
  web-ready for easy sharing of analysis results even comparisons of multiple indicators across multiple
  scenarios.

Because it is up the user to decide when Patchworks should stop searching for a better solution, a specific defined criteria for a 'stable' solution is desirable. This helps ensure that differences between scenario results occur because of model input differences and not from extra effort spent finding a better solution. For the purpose of this project, Patchwork results were accepted once the objective function improved by less than 0.1% in 100,000 iterations.

## 9.2 Harvest Flow Objectives

Harvest flow objectives used during analysis area consistent with MFR policy<sup>20</sup>. The primary objective is to gradually adjust harvest levels, if required, to arrive at the long-term harvest level (LTHL) for the TSA. A wide range of harvest flows are possible but ideally the flows will:

- Achieve an acceptable short-term harvest level beginning at the current AAC whenever possible;
- Where harvest level changes are required, make steps no larger than 10%;

May 10, 2010 50

\_

Harvest Flow Considerations for the Timber Supply Review" <a href="http://www.llbc.leg.bc.ca/public/PubDocs/bcdocs/365082/">http://www.llbc.leg.bc.ca/public/PubDocs/bcdocs/365082/</a>
<a href="https://www.llbc.leg.bc.ca/public/PubDocs/bcdocs/365082/">https://www.llbc.leg.bc.ca/public/PubDocs/bcdocs/365082/</a>
<a href="https://www.llbc.leg.bc.ca/public/PubDocs/bcdocs/">https://www.llbc.leg.bc.ca/public/PubDocs/bcdocs/</a>
<a href="https://www.llbc.leg.bc.ca/public/PubDocs/bcdocs/">https://www.llbc.leg.bc.

- A medium-term harvest level below the long-term harvest level should be avoided and if present, minimized.
- Do not permit the mid-term harvest level to fall below a level reflecting the productive capacity of the TSA (natural stand yield estimates); and
- Achieve a maximum long-term stable harvest level over a 300-year time horizon reflecting the
  productive capacity of the TSA (based on TIPSY yield estimates). One indicator of a stable long-term
  harvest level will be a constant long-term total inventory (growing stock on the THLB).

#### 9.3 Initial Harvest Rate

The base case harvest forecast will use the following initial harvest rates:

Initial Harvest:  $768,000 \text{ m}^3/\text{yr} + 14,071 \text{ m}3/\text{yr} \text{ (NRL)} + 1,500 \text{ m}^3/\text{yr} \text{ (EBM Obj. 3)} = 783,571 \text{ m}^3/\text{yr}$ 

## 9.4 Long Run Sustained Yield

Long run sustained yield (LRSY) values calculated on the basis of both natural and managed stand yield curves are shown in Table 52. LRSY is a measure of what the land base is capable of producing if only timber production is considered and can be used to assess the level of impact arising from non timber management issues.

Table 52. LRSY values for natural and managed stands

| Description                          | Stand   | I Туре  |
|--------------------------------------|---------|---------|
| Description                          | Natural | Managed |
| Current THLB (ha)                    | 123,162 | 123,162 |
| - Future roads (ha)                  | 2,713   | 2,713   |
| + TL Reversions                      | 5,279   | 5,279   |
| = Long term THLB (ha)                | 125,728 | 125,728 |
| * Average MAI at culmination (m³/ha) | 3.3     | 7.5     |
| = Theoretical Gross LRSY (m³/yr)     | 414,902 | 942,960 |
| - Non-recoverable losses (m³/yr)     | 14,071  | 14,071  |
| = Theoretical Net LRSY (m³/yr)       | 400,831 | 928,889 |

#### 9.5 Sensitivities and Critical Issues

The following list of sensitivities and critical issue analyses planned:

#### Sensitivities

- 1. Harvest Flows:
  - a. High Initial Harvest Flow
  - b. Non Declining Harvest flow
- 2. Larger THLB (low royalty/stumpage land base)
- 3. Smaller THLB (high royalty/stumpage land base)
- 4. Larger THLB (include all previously logged stands)
- 5. Natural stand yields +- 10%
  - a. Natural stand yields plus 10%
  - b. Natural stand yields minus 10%
- 6. Future dispersed retention modelled as 20% (instead of 10%)
- 7. Minimum Harvest Ages +-10 yrs
  - a. Minimum Harvest Ages plus 10 yrs

- b. Minimum Harvest Ages minus 10 yrs
- 8. Manage Cw Profile (30% for the cedar leading stands)
- 9. Drop Grizzly EBM requirements
- 10. Old seral representation using EBM risk managed targets
- 11. Control partition harvest levels
  - a. Drop the maximum Outer harvest level to 10%
  - b. Suppress harvest in Owikeno watershed: short term areas for 40 year and perpetual for the rest
- 12. Pre EBM Scenarios
  - a. Pre EBM (no changes to parks)
  - b. Pre EBM + 2004 Version of Parks (Tweedmuir, Hakai, Fiordland only)

Actual sensitivity runs completed may vary from this initial plan based on information discovered during the analysis process.

## **Glossary**

Allowable annual cut (AAC)

The rate of timber harvest permitted each year from a specified area of land, usually expressed as cubic meters of wood per year.

**Analysis unit** 

A grouping of types of forest — for example, by species, site productivity, silvicultural treatment, age, and or location — done to simplify analysis and generation of timber yield tables.

Base case harvest forecast

The timber supply forecast which illustrates the effect of current forest management practices on the timber supply using the best available information, and which forms the reference point for sensitivity analysis.

**Basic sector** 

Sectors of the economy, such as forestry, tourism and mining, which create flows of income into the region and are assumed to be drivers of the local economy. Non-basic sectors, such as retail outlets, are supported by basic sectors.

**Biodiversity (biological diversity)** 

The diversity of plants, animals and other living organisms in all their forms and levels of organization, including the diversity of genes, species and ecosystems, as well as the evolutionary and functional processes that link them.

Biogeoclimatic (BEC) variant

A subdivision of a biogeoclimatic subzone. Variants reflect further differences in regional climate and are generally recognized for areas slightly drier, wetter, snowier, warmer or colder than other areas in the subzone.

**Biogeoclimatic zones** 

A large geographic area with broadly homogeneous climate and similar dominant tree species.

Coniferous Cutblock Cutblock adjacency Coniferous trees have needles or scale-like leaves and are usually 'evergreen'.

A specific area, with defined boundaries, authorized for harvest.

The spatial relationship among cutblocks. Most adjacency restrictions require that recently harvested areas must achieve a desired condition (green-up) before nearby or adjacent areas can be harvested. Specifications for the maximum allowable proportion of a forested landscape that does not meet green-up requirements are used to approximate the timber supply impacts of adjacency restrictions.

Deciduous Ecosystem Based Management (EBM) Deciduous trees shed their leaves annually and commonly have broad-leaves. An adaptive approach to managing human activities that seeks to ensure the coexistence of healthy, fully functioning ecosystems and human communities. The intent is to maintain those spatial and temporal characteristics of ecosystems such that component species and ecological processes can be sustained, and human wellbeing supported and improved.

**Employment coefficient** 

The number of person-years of employment supported by every 1,000 cubic meters of timber harvested; for example, a coefficient of 1.0 indicates that every 1,000 cubic meters harvested supports one person-year, or 500,000 cubic meters supports 500 person-years.

**Employment multiplier** 

An estimate of the total employment supported by each direct job, for example a multiplier of 2.0 means that one direct job supports one additional indirect and induced job.

Environmentally sensitive areas (ESA)

Areas with significant non-timber values, fragile or unstable soils, impediments to establishing a new tree crop, or high risk of avalanches.

Forest cover objectives

Specify desired distributions of areas by age or size class groupings. These objectives can be used to reflect desired conditions for wildlife, watershed protection, visual quality and other integrated resource management objectives. General adjacency and green-up guidelines are also specified using forest cover objectives (see **cutblock adjacency and Green-up**).

Forest inventory

An assessment of British Columbia's timber resources. It includes computerized maps, a database describing the location and nature of forest cover, including size, age, timber volume, and species composition, and a description of other forest values such as recreation and visual quality.

Forest and Range Practices Act (FRPA)
Forest type

Legislation that govern forest practices and planning, with a focus on ensuring management for all forest values.

The classification or label given to a forest stand, usually based on its tree species composition. Pure spruce stands and spruce-balsam mixed stands are two examples.

Free-growing

An established seedling of an acceptable commercial species that is free from

growth-inhibiting brush, weed and excessive tree competition.

Green-up

The time needed after harvesting for a stand of trees to reach a desired condition (usually a specific height) — to ensure maintenance of water quality, wildlife habitat, soil stability or aesthetics — before harvesting is permitted in adjacent areas.

**Growing stock** Harvest forecast The volume estimate for all standing timber at a particular time.

The flow of potential timber harvests over time. A harvest forecast is usually a measure of the maximum timber supply that can be realized over time for a specified land base and set of management practices. It is a result of forest planning models and is affected by the size and productivity of the land base, the current growing stock, and management objectives, constraints and assumptions.

Higher level plans

Higher level plans establish the broader, strategic context for operational plans, providing objectives that determine the mix of forest resources to be managed in a given area.

Indirect and induced jobs

Indirect jobs are supported by direct business purchases of goods and services. Induced jobs are supported by employee purchases of goods and services; for example, at retail outlets.

Inoperable areas

Areas defined as unavailable for harvest for terrain-related or economic reasons. Operability can change over time as a function of changing harvesting technology and economics.

Integrated resource management (IRM) **Karst** 

The identification and consideration of all resource values, including social, economic and environmental needs, in resource planning and decision-making.

An area of limestone terrain characterized by sinks, ravines, and underground streams.

Landscape-level biodiversity

The Landscape Unit Planning Guide provides objectives for maintaining biodiversity at both the landscape level and the stand level. At the landscape level, guidelines are provided for the maintenance of seral stage distribution, patch size distribution and landscape connectivity.

Landscape unit

A planning area based on topographic or geographic features, that is appropriately sized (up to 100 000 hectares), and designed for application of landscape-level biodiversity objectives.

Long-term harvest level

A harvest level that can be maintained indefinitely given a particular forest management regime (which defines the timber harvesting land base, and objectives and guidelines for non-timber values) and estimates of timber growth and yield. Forest stands with trees between 80 and 120 years old, depending on species, site

conditions and biogeoclimatic zone.

Mature seral

Approximations of management objectives, priorities, constraints and other conditions needed to represent forest management actions in a forest planning model. These include, for example, the criteria for determining the timber harvesting land base, the specification of minimum harvestable ages, utilization levels, integrated resource

Management assumptions

guidelines and silviculture and pest management programs. Stand volume divided by stand age. The age at which average stand growth, or MAI, reaches its maximum is called the culmination age (CMAI). Harvesting all stands at

Mean annual increment (MAI)

this age results in a maximum average harvest over the long term. The age at which a stand of trees is expected to achieve a merchantable condition. The minimum harvestable age could be defined based on maximize average

productivity (culmination of mean annual increment), minimum stand volume, or

Minimum harvestable age (MHA)

product objectives (usually related to average tree diameter). An abstraction and simplification of reality constructed to help understand an actual system or problem. Forest managers and planners have made extensive use of models, such as maps, classification systems and yield projections, to help direct

Model

management activities.

Natural disturbance type (NDT)

An area that is characterized by a natural disturbance regime, such as wildfires, which affects the natural distribution of seral stages. For example areas subject to less frequent stand-initiating disturbances usually have older forests.

Not satisfactorily restocked (NSR)

An area not covered by a sufficient number of well-spaced trees of desirable species. Stocking standards are set by the B.C. Forest Service. Areas harvested prior to October 1987 and not yet sufficiently stocked according to standards are classified as backlog NSR. Areas harvested or otherwise disturbed since October 1987 are classified as current NSR.

**Operational Adjustment Factor** (OAF)

OAF1 and OAF2 are TIPSY input parameters that reduce predicted yield to account for factors such as non-productive areas within stands, disease and insects, noncommercial cover, stocking gaps, decay, waste, and breakage.

Operability

Classification of an area considered available for timber harvesting. Operability is determined using the terrain characteristics of the area as well as the quality and quantity of timber on the area.

Person-year(s)

One person working the equivalent of one full year, defined as at least 180 days of work. Someone working full-time for 90 days accounts for 0.5 person-years.

54 May 10, 2010

Productive forest land base (PFLB)

**Table Interpolation Program for** 

Stand Yields (TIPSY)

Timber supply

Protected area

Seral stages

All forested crown land in a management unit. Used to support the management of non timber resources. The THLB is a subset of this land base.

A designation for areas of land and water set aside to protect natural heritage, cultural heritage or recreational values (may include national park, provincial park, or

ecological reserve designations).

Areas of land adjacent to wetlands or bodies of water such as swamps, streams, Riparian area

rivers or lakes.

Scenic area Any visually sensitive area or scenic landscape identified through a visual landscape

inventory or planning process carried out or approved by a district manager.

Sensitivity analysis A process used to examine how uncertainties about data and management practices could affect timber supply. Inputs to an analysis are changed, and the results are

compared to a baseline or base case.

Sequential stages in the development of plant communities that successively occupy

a site and replace each other over time.

Site index A measure of site productivity. The indices are reported as the average height, in

meters, that the tallest trees in a stand are expected to achieve at 50 years (age is measured at 1.3 meters above the ground). Site index curves have been developed

for British Columbia's major commercial tree species.

A stand is a relatively localized and homogeneous land unit that can be managed Stand-level biodiversity using a single set of treatments. In stands, objectives for biodiversity are met by maintaining specified stand structure (wildlife trees or patches), vegetation species

composition and coarse woody debris levels.

Stocking The proportion of an area occupied by trees, measured by the degree to which the

crowns of adjacent trees touch, and the number of trees per hectare.

A B.C. Forest Service computer program used to generate yield projections for managed stands based on interpolating from yield tables of a model (TASS) that simulates the growth of individual trees based on internal growth processes, crown

competition, environmental factors and silvicultural practices.

Timber harvesting land base Crown forest land within the timber supply area where timber harvesting is considered (THLB) both acceptable and economically feasible, given objectives for all relevant forest

values, existing timber quality, market values, and applicable technology. The amount of timber that is forecast to be available for harvesting over a specified

time period, under a particular management regime.

An integrated resource management unit established in accordance with Section 7 of Timber supply area (TSA)

the Forest Act.

Tree farm license (TFL) Provides rights to harvest timber, and outlines responsibilities for forest management,

in a particular area.

A hoofed herbivore, such as deer. Unqulate **Unsalvaged losses** 

The volume of timber killed or damaged annually by natural causes (e.g., fire, wind,

insects and disease) that is not harvested.

Variable Density Yield Prediction An empirical yield prediction system, supported by the Ministry of Forests and Range. (VDYP) designed to predict average yields and provide forest inventory updates over large areas (i.e., Timber Supply Areas). It is intended for use in unmanaged natural stands

of pure or mixed species composition.

**Vegetation Resources Inventory** An assessment of British Columbia's vegetation resources. It includes computerized (VRI) maps, a database describing the location and nature of forest information, including

timber size, stand age, timber volume, tree species composition, and shrub, herb, and

bryoid information. It replaces the older forest inventory.

Visual quality objective (VQO) Defines a level of acceptable landscape alteration resulting from timber harvesting and other activities. A number of visual quality classes have been defined on the

basis of the maximum amount of alteration permitted.

Volume estimates Estimates of yields from forest stands over time. Yield projections can be developed for stand volume, stand diameter or specific products, and for empirical (average

stocking), normal (optimal stocking) or managed stands.

Yield projections See volume estimates.

Watershed An area drained by a stream or river. A large watershed may contain several smaller

watersheds.

Wildlife tree A standing live or dead tree with special characteristics that provide valuable habitat

for conservation or enhancement of wildlife.

Woodlot licence An agreement entered into under the Forest Act. It allows for small-scale forestry to

be practised in a described area (Crown and private) on a sustained yield basis.

55 May 10, 2010

## **Acronyms**

**FPC** 

**AAC** Allowable Annual Cut **Analysis** Timber Supply Analysis

Analysis Unit ΑU

**BCTS** British Columbia Timber Sales

**BEC** Biogeoclimatic Ecosystem Classification

**BEO Biodiversity Emphasis Option** 

Biodiversity, Mining and Tourism Area **BMTA** 

CF Chief Forester

**CWAP** Coastal Watershed Assessment Procedure **DFO** Department of Fisheries and Oceans

DM District Manager

**Ecosystem-Based Management EBM** ESA **Environmentally Sensitive Area** FIP Forest inventory Planning FIZ Forest Inventory Zone

Forest Practices Code **FPPR** Forest Planning and Practices Regulation

Forest Stewardship Plan **FSP GAR** Government Action Regulation Geographic Information System GIS

HLP Higher Level Plan

Integrated Land Management Bureau (Ministry of Agriculture and Lands) **ILMB** 

IΡ Information Package

Integrated Resource Management IRM **LRMP** Land and Resource Management Plan

LU Landscape Unit

MHA Minimum Harvestable Age Ministry of Environment MOE Ministry of Forests and Range MFR

MO Ministerial Order

NCC Non-Commercial Cover **NDT** Natural Disturbance Type NRL Non-Recoverable Losses Not Satisfactorily Restocked **NSR** Operational Adjustment Factor OAF **OGMA** Old Growth Management Area **PSP** Permanent Sample Plot **PFLB** Productive Forest Land Base **PSYU** Public Sustained Yield Unit Quadratic Mean Diameter QMD Recreation Features Inventory RFI Riparian Management Zone **RMZ** Recreation Opportunity Spectrum ROS

RRZ Riparian Reserve Zone

Recommended Visual Quality Class **RVQC** 

Site Index SI

Special Resource Management Zone SRMZ

TFL Tree Farm License

**THLB Timber Harvesting Land Base** VAC Visual Absorption Capability VQO Visual Quality Objective

Vegetation Resources Inventory VRI

**WHA** Wildlife Habitat Area **UWR** Ungulate Winter Range

56 May 10, 2010

## References

- **B.C. Ministry of Agriculture and Lands**. 2007. South Central Coast Land Use Objective Order, August 2, 2007. Integrated Land Management Bureau. Nanaimo, BC.
- **B.C. Ministry of Agriculture and Lands**. 2008. *Central and North Coast Land Use Objective Order*, January 3, 2008. Integrated Land Management Bureau. Nanaimo, BC.
- **B.C. Ministry of Agriculture and Lands**. 2008. *Background and Intent Document for the South Central Coast and Central and North Coast Land Use Objectives Orders*, April 18, 2008. Integrated Land Management Bureau. Nanaimo, BC.
- **B.C. Ministry of Forests.** 2003a. *DFAM interim standards for data package preparation and timber supply analyses.* Timber Supply Branch.
- **B.C. Ministry of Forests.** 2003b. *DFAM interim standards for public and First Nations review.* Timber Supply Branch.
- **B.C. Ministry of Forests.** 2003c. *Modelling options for disturbance of areas outside the timber harvesting land base.* Draft working paper. Forest Analysis Branch.
- **B.C. Ministry of Forests**. 2003d. Supplemental guide for preparing the timber supply analysis package. Forest Analysis Branch.
- **B.C. Ministry of Forests**. 2003e. *Harvest flow considerations for the timber supply review. Draft working paper*. Forest Analysis Branch.
- B.C. Ministry of Forests. 2002. Landscape Unit Planning Guidebook, Forest Practices Code, Victoria, BC.
- **B.C. Ministry of Forests**. 1999a. *Timber Supply Review, Mid Coast Timber Supply Area Analysis Report.* Timber Supply Branch.
- B.C. Ministry of Forests. 1999b. Coastal Watershed Assessment Procedures Guidebook (v2.1 Apr 1999)
- **B.C. Ministry of Forests**. 1998. *Procedures for Factoring Visual Resources into Timber Supply Analyses*. Timber Supply Branch.
- **B.C. Ministry of Forests and B.C. Ministry of Environment, Lands and Parks**. 1995. *Biodiversity Guidebook*. Forest Practices Code, Victoria, BC.

**Forsite Consultants Ltd.** 2009. *Determination of an Economically Operable Land base for the Mid Coast TSA.* January 2009, Salmon Arm, BC.

**Government of B.C.** 2004. *Draft Mid Coast Land and Resource Management Plan – July 22, 2004,* B.C. Ministry of Sustainable Resource Management.

**Pedersen, L**. 2000. *Mid Coast Timber Supply Area Rationale for Allowable Annual Cut (AAC) Determination.* B.C. Ministry of Forests, Timber Supply Branch.

**Timberline Natural Resource Consultants Ltd**. 2009. *Site Index Adjustment of the Mid Coast Timber Supply Area* (Project # BC0108405), January 2009, Timberline Natural Resource Consultants, Victoria, BC.

**Timberline Natural Resource Consultants Ltd**. 2009. *Kingcome Timber Supply Area TSR3 Data Package* (Project # 4061921), June 2008, Timberline Natural Resource Consultants, Victoria, BC.

## **Appendix A: Yield Curves**

|     |     |     |     |       |     |     |     |       |     |     |     | Exis  | ting Na  | tural | Yields | (VDY | P)  |     |     |     |     |       |     |     |     |       |     |     |
|-----|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|-----|-------|----------|-------|--------|------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|
| Age | 101 | 102 | 103 | 104   | 105 | 106 | 107 | 108   | 109 | 110 | 111 | 112   | 113      | 114   | 121    | 122  | 123 | 124 | 125 | 126 | 127 | 128   | 129 | 130 | 131 | 132   | 133 | 134 |
| 0   | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0        | 0     | 0      | 0    | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0   | 0   |
| 10  | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0        | 0     | 0      | 0    | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 1     | 0   | 0   |
| 20  | 1   | 0   | 0   | 3     | 1   | 0   | 0   | 10    | 1   | 0   | 0   | 25    | 10       | 0     | 1      | 0    | 0   | 1   | 0   | 0   | 0   | 3     | 1   | 0   | 0   | 34    | 9   | 1   |
| 30  | 66  | 26  | 0   | 71    | 27  | 1   | 1   | 122   | 32  | 1   | 1   | 131   | 43       | 12    | 86     | 18   | 2   | 41  | 9   | 1   | 0   | 71    | 9   | 1   | 0   | 128   | 38  | 13  |
| 40  | 174 | 119 | 17  | 168   | 112 | 19  | 6   | 242   | 122 | 10  | 2   | 255   | 141      | 30    | 217    | 112  | 37  | 130 | 77  | 30  | 3   | 187   | 87  | 20  | 1   | 255   | 114 | 35  |
| 50  | 266 | 203 | 77  | 257   | 191 | 67  | 37  | 345   | 204 | 58  | 7   | 362   | 238      | 62    | 325    | 199  | 105 | 213 | 150 | 86  | 33  | 288   | 169 | 79  | 11  | 363   | 205 | 87  |
| 60  | 344 | 274 | 128 | 341   | 264 | 115 | 77  | 434   | 275 | 110 | 41  | 453   | 322      | 112   | 413    | 274  | 163 | 290 | 217 | 140 | 73  | 375   | 241 | 137 | 53  | 455   | 286 | 152 |
| 70  | 411 | 334 | 172 | 415   | 330 | 159 | 115 | 510   | 337 | 157 | 87  | 530   | 397      | 163   | 488    | 337  | 213 | 360 | 278 | 188 | 111 | 450   | 305 | 189 | 95  | 533   | 357 | 209 |
| 80  | 470 | 387 | 211 | 485   | 391 | 200 | 151 | 576   | 393 | 199 | 127 | 595   | 463      | 212   | 552    | 393  | 257 | 425 | 333 | 234 | 147 | 516   | 360 | 236 | 133 | 600   | 419 | 262 |
| 90  | 520 | 431 | 244 | 537   | 438 | 232 | 180 | 630   | 439 | 234 | 163 | 648   | 518      | 256   | 605    | 440  | 294 | 473 | 377 | 270 | 177 | 571   | 408 | 275 | 166 | 655   | 473 | 308 |
| 100 | 565 | 470 | 273 | 581   | 478 | 260 | 205 | 676   | 479 | 266 | 195 | 693   | 566      | 296   | 650    | 480  | 326 | 513 |     | 301 | 203 | 619   | 449 | 310 | 196 | 702   | 519 | 350 |
| 110 | 605 | 504 | 300 | 619   | 511 | 284 | 227 | 716   | 513 | 294 | 224 | 730   | 608      | 332   | 690    | 515  | 355 | 547 | 446 | 328 | 226 | 660   | 485 | 341 | 222 | 741   | 560 | 387 |
| 120 | 640 | 533 | 322 | 645   | 535 | 302 | 244 | 749   | 542 | 318 | 250 | 761   | 643      | 364   | 723    | 546  | 379 | 570 | 470 | 347 | 243 | 695   | 515 | 368 | 245 | 774   | 595 | 419 |
| 130 | 669 | 559 | 342 | 684   | 570 | 325 | 264 | 785   | 573 | 342 | 274 | 793   | 679      | 397   | 754    | 572  | 400 | 606 | 501 | 373 | 264 | 732   | 547 | 395 | 269 | 808   | 630 | 452 |
| 140 | 692 | 580 | 358 | 720   | 602 | 346 | 283 | 818   | 602 | 366 | 295 | 822   | 713      | 428   | 780    | 595  | 418 | 639 | 530 | 397 | 283 | 765   | 577 | 421 | 290 | 838   | 662 | 483 |
| 150 | 710 | 597 | 371 | 752   | 630 | 365 | 299 | 848   | 628 | 386 | 315 | 847   | 742      | 456   | 801    | 613  | 432 | 669 | 556 | 418 | 300 | 795   | 603 | 444 | 310 | 865   | 690 | 511 |
| 160 | 723 | 609 | 381 | 780   | 654 | 381 | 313 | 874   | 651 | 405 | 331 | 870   | 769      | 482   | 817    | 626  | 442 | 695 | 578 | 436 | 314 | 822   | 627 | 464 | 328 | 889   | 716 | 537 |
| 170 | 732 | 617 | 387 | 803   | 675 | 395 | 324 | 896   | 672 | 422 | 346 | 890   | 793      | 506   | 829    | 634  | 449 | 717 | 596 | 451 | 325 | 845   | 649 | 483 | 344 | 909   | 740 | 560 |
| 180 | 735 | 621 | 391 | 828   | 697 | 409 | 336 | 917   | 691 | 438 | 359 | 909   | 815      |       | 837    | 639  | 452 | 740 | 616 | 467 | 338 | 866   | 669 | 501 | 360 | 928   | 761 | 582 |
| 190 | 744 | 630 | 398 | 851   | 718 | 423 | 347 | 937   | 710 | 454 | 372 | 926   | 836      | 550   | 848    | 648  | 459 | 762 | 635 | 483 | 350 | 887   | 688 | 517 | 374 | 946   | 781 | 603 |
| 200 | 752 | 638 | 404 | 874   | 738 | 436 | 358 | 956   | 727 | 468 | 384 | 941   | 855      | 571   | 860    | 657  | 466 | 783 | 652 | 498 | 362 | 905   | 705 | 533 | 388 | 962   | 799 | 623 |
| 210 | 761 | 646 | 410 | 895   | 757 | 449 | 369 | 974   | 743 | 482 | 395 | 955   | 873      | 590   | 870    | 666  | 473 | 803 | 669 | 512 | 373 | 922   | 721 | 548 | 402 | 977   | 816 | 641 |
| 220 | 769 | 653 | 415 | 921   | 779 | 464 | 382 | 990   | 758 | 495 | 405 | 968   | 890      | 608   | 881    | 674  | 479 | 828 | 690 | 529 | 387 | 938   | 736 | 562 | 414 | 991   | 832 | 658 |
| 230 | 777 | 661 | 420 | 947   | 802 | 478 | 395 | 1,005 | 772 | 507 | 414 | 980   | 906      | 625   | 890    | 682  | 485 | 851 | 710 | 546 | 400 | 953   | 750 | 575 | 426 | 1,003 | 846 | 674 |
| 240 | 784 | 668 | 425 | 971   | 823 | 492 | 407 | 1,019 | 785 | 518 | 423 | 992   | 920      | 642   | 900    | 690  | 491 | 874 | 729 | 563 | 413 | 967   | 763 | 587 | 437 | 1,015 | 860 | 689 |
| 250 | 792 | 674 | 430 | 995   | 844 | 506 | 419 | 1,032 | 798 | 529 | 431 | 1,002 | 934      | 657   | 908    | 697  | 496 | 896 | 748 | 578 | 426 | 980   | 775 | 598 | 447 | 1,026 | 872 | 703 |
| 260 | 792 | 675 | 431 | 999   | 847 | 509 | 421 | 1,039 | 804 | 535 | 437 | 1,011 | 945      | 670   | 911    | 698  | 497 | 899 | 751 | 581 | 427 | 987   | 783 | 605 | 454 | 1,035 | 883 | 714 |
| 270 | 793 | 676 | 432 | 1,002 | 851 | 512 | 422 | 1,045 | 810 | 541 | 443 | 1,019 | 954      | 682   | 913    | 698  | 498 | 901 | 754 | 583 | 428 | 995   | 791 | 611 | 460 | 1,043 | 893 | 725 |
| 280 | 794 | 677 | 433 | 1,005 | 854 | 514 | 424 | 1,051 | 815 | 547 | 448 | 1,026 | 963      | 693   | 914    | 699  | 498 | 903 | 757 | 585 | 429 | 1,001 | 798 | 617 | 466 | 1,050 | 902 | 735 |
| 290 | 795 | 678 | 434 | 1,008 | 857 | 517 | 425 | 1,056 | 820 | 552 | 453 | 1,033 | 972      | 704   | 916    | 699  | 499 | 905 | 759 | 586 | 430 | 1,007 | 804 | 622 | 471 | 1,057 | 911 | 744 |
| 300 | 795 | 678 | 435 | 1,010 | 859 | 519 | 426 | 1,061 | 824 | 557 | 458 | 1,040 | 980      | 715   | 917    | 700  | 499 | 906 | 761 | 588 | 431 | 1,012 | 809 | 627 | 476 | 1,064 | 919 | 753 |
| 310 | 796 | 679 | 436 | 1,013 | 862 | 521 | 428 | 1,065 | 828 | 561 | 462 | 1,046 | 987      | 725   | 919    | 700  | 500 | 907 | 763 | 589 | 432 | 1,017 | 815 | 632 | 480 | 1,070 | 926 | 762 |
| 320 | 797 | 679 | 437 | 1,015 | 864 | 523 | 429 | 1,069 | 832 | 565 | 466 | 1,052 | 995      | 734   | 920    | 700  | 500 | 909 | 765 | 591 | 433 | 1,021 | 819 | 636 | 485 | 1,076 | 933 | 770 |
| 330 | 797 | 680 | 437 | 1,016 | 866 | 525 | 430 | 1,072 | 835 | 569 | 469 | 1,058 | 1,002    | 744   | 921    | 700  | 501 | 909 | 767 | 592 | 434 | 1,024 | 823 | 640 | 488 | 1,082 | 940 | 778 |
| 340 | 797 | 680 | 438 | 1,018 | 868 | 526 | 431 | 1,075 | 838 | 573 | 473 | 1,063 | 1,008    | 752   | 922    | 700  | 501 | 910 | 768 | 593 | 434 | 1,027 | 827 | 643 | 492 | 1,087 | 946 | 785 |
| 350 | 798 | 680 | 438 | 1,019 | 869 | 528 | 432 | 1,078 | 840 | 576 | 476 | 1,068 | 1,014    | 761   | 922    | 700  | 501 | 910 | 769 | 594 | 435 | 1,030 | 830 | 646 | 496 | 1,092 | 952 | 792 |
|     |     |     |     |       |     |     |     |       |     |     |     |       | <u> </u> |       |        |      |     |     |     |     |     | •     |     |     |     |       |     |     |

|     |       |       |     |       |       |       |       |       |       |       |       | Futu  | re Mar | nageo | d Yield: | s (TIPS | SY) |       |       |       |       |       |       |       |       |       |       |     |
|-----|-------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|----------|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| Age | 201   | 202   | 203 | 204   | 205   | 206   | 207   | 208   | 209   | 210   | 211   | 212   | 213    | 214   | 221      | 222     | 223 | 224   | 225   | 226   | 227   | 228   | 229   | 230   | 231   | 232   | 233   | 234 |
| 0   | 0     | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0     | 0        | 0       | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   |
| 10  | 0     | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0     | 0        | 0       | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   |
| 20  | 21    | 4     | 0   | 5     | 3     | 2     | 3     | 1     | 3     | 3     | 2     | 13    | 2      |       | 16       | 2       | 0   | 2     | 3     | 1     | 1     | 1     | 2     |       | 0     | 9     | 0     | 0   |
| 30  | 129   | 61    | 12  | 69    | 59    |       | 64    | 69    | 71    | 51    | 43    | 119   | 29     | 1     | 108      | 50      | 15  | 51    | 62    | 29    | 20    | 63    | 43    | 33    | 16    | 105   | 18    | 2   |
| 40  | 257   | 156   | 44  | 185   | 164   | 127   | 179   | 230   | 223   | 190   | 162   | 269   | 106    | 7     | 223      | 133     | 52  | 149   | 170   | 113   | 82    | 217   | 172   | 149   | 103   | 251   | 79    | 15  |
| 50  | 397   | 246   | 92  | 313   | 289   | 235   | 309   | 381   | 370   | 332   | 292   | 423   | 206    |       | 339      |         | 106 | 266   | 296   | 219   | 169   | 364   | 307   | 279   | 226   | 396   | 162   | 52  |
| 60  | 524   | 340   | 142 | 439   | 406   | 338   | 430   | 523   | 513   | 470   | 418   | 579   | 305    |       | 457      |         | 161 | 374   | 415   | 324   | 261   | 505   | 437   | 402   | 341   | 549   | 249   | 101 |
| 70  | 641   | 431   | 187 | 558   | 519   | 435   | 547   | 645   | 634   | 586   | 532   | 717   | 402    |       | 555      |         | 210 | 482   | 531   | 418   | 343   | 622   | 550   | 515   | 450   | 680   |       | 154 |
| 80  | 746   |       | 228 | 664   | 627   | 528   | 656   | 763   | 751   | 698   | 637   | 850   | 499    |       | 652      |         | 254 | 583   | 639   | 507   | 418   | 738   | 654   | 615   | 542   | 810   |       | 208 |
| 90  | 837   |       | 265 | 757   | 716   | 615   | 745   | 867   | 857   | 803   | 735   | 966   | 585    |       | 735      |         | 296 | 670   | 728   | 593   | 491   | 842   | 753   | 710   | 629   | 928   |       | 259 |
| 100 | 914   |       | 300 | 850   | 798   | 690   | 837   | 958   | 945   | 891   | 824   | 1,062 |        | 243   | 808      |         | 338 | 746   | 813   | 669   | 560   | 929   | 844   | 800   | 710   | 1,024 |       | 309 |
| 110 | 984   |       | 336 | 931   | 883   | 752   | 924   | 1,046 | 1,032 | 973   | 899   | 1,149 | 743    |       | 870      | 628     |     | 824   |       | 732   | 624   | 1,016 | 919   | 874   | 788   | 1,108 | 643   |     |
| 120 | ,     |       |     | 1,002 | 957   | 817   | 997   | 1,130 | 1,113 |       | 972   | 1,224 | 814    |       | 926      | 676     |     | 895   | _     | 791   |       | 1,096 | 992   | 943   |       | 1,185 | 709   |     |
| 130 | , -   |       |     | 1,069 | 1,021 | 881   | 1,063 | 1,207 |       |       |       | 1,287 | 879    |       | 977      | 719     |     | 954   | ,     | 851   |       | 1,172 | ,     | 1,010 | 911   | 1,249 |       | 452 |
| 140 | .,    |       | 423 | 1,128 | 1,080 | 935   |       | 1,266 |       |       | 1,102 | 1,341 | 933    | 404   | 1,024    |         |     | 1,008 | 1,099 | 907   | 762   | 1,236 | 1,125 | , ,   | 969   | 1,305 |       | 494 |
| 150 | 1,190 |       | 445 | 1,178 | 1,133 | 982   | 1,177 | 1,317 | 1,301 | 1,245 | 1,161 | 1,382 | 981    | 440   | 1,064    |         | 494 | 1,059 | 1,152 | 955   | 805   | 1,286 | 1,186 | 1,130 | 1,021 | 1,349 |       | 532 |
| 160 | 1,223 |       | 467 | 1,224 | 1,179 | 1,024 | 1,223 | 1,369 | 1,349 | ,     | 1,210 | 1,418 |        | 474   | 1,098    |         | -   | 1,103 | 1,198 | 997   | 847   | 1,334 | 1,233 | 1,182 | 1,060 | 1,386 |       | 567 |
| 170 | .,    | 940   |     | 1,267 | 1,220 | 1,062 | 1,263 | 1,418 | ,     | ,     | 1,250 | 1,454 | 1,070  |       | 1,127    |         |     | 1,142 | 1,239 | 1,036 | 885   | 1,382 | 1,273 | 1,223 | 1,086 | 1,419 |       | 601 |
| 180 | 1,281 | 968   |     | 1,303 | 1,255 | 1,096 | 1,300 |       | ,     | ,     | 1,285 | 1,484 | 1,107  | 533   | 1,152    |         |     | 1,176 | 1,275 | 1,069 | 917   | 1,425 | 1,309 | 1,259 | 1,109 | 1,450 |       | 633 |
| 190 | 1,307 | 992   | _   | 1,338 | 1,287 | 1,125 | 1,332 | 1,496 | ,     | ,     | 1,321 |       | 1,142  | 561   | 1,176    |         |     | 1,208 | ,     | 1,100 | 944   | ,     | 1,348 | ,     | 1,128 | 1,477 | .,    | 664 |
| 200 |       | 1,014 |     | 1,369 | 1,315 | 1,151 | 1,364 | 1,528 |       |       | 1,355 |       | 1,173  | 586   | 1,196    |         | 590 | ,     | 1,335 | 1,126 | 969   | 1,494 | 1,383 | 1,325 | 1,143 | 1,500 | ,     | 693 |
| 210 | ,     | ,     | 550 | 1,399 | 1,343 | 1,177 | 1,394 | 1,556 | 1,539 | ,     | 1,386 | 1,548 | 1,201  | 609   | 1,216    |         | 604 | 1,264 | 1,364 | 1,151 | 993   | 1,522 | 1,415 | 1,356 | 1,158 | 1,518 | .,    | 719 |
| 220 | ,     | ,     |     | 1,430 | 1,376 |       | 1,428 | 1,586 | 1,566 |       | 1,414 |       | 1,223  |       |          | 953     |     | 1,291 |       |       |       |       | 1,443 |       | 1,173 | 1,535 |       | 743 |
| 230 | .,    | ,     |     | 1,457 | 1,407 | , -   | 1,459 | 1,613 | ,     | ,     | 1,439 | 1,548 |        |       | ,        |         |     | 1,318 |       | ,     | ,     | 1,575 | _     | ,     | 1,187 | 1,535 | , -   | 767 |
| 240 |       | ,     |     | ,     | 1,436 |       | ,     | 1,637 | ,     | ,     | 1,462 | 1,548 |        |       | 1,267    |         |     | 1,343 | ,     | ,     | ,     | ,     | _     | ,     | 1,201 | 1,535 | ,     | 787 |
| 250 | ,     | ,     | 595 | 1,505 | 1,461 | 1,277 | 1,510 | 1,660 | ,     | ,     | 1,482 | 1,548 | 1,274  |       | 1,280    | 997     |     | 1,366 | ,     | ,     | ,     | ,     | 1,508 | 1,454 | 1,213 | 1,535 | ,     |     |
| 260 |       | ,     | 604 | 1,526 | 1,484 | ,     | 1,531 | 1,679 | ,     | ,     | 1,500 | 1,548 | 1,288  |       | 1,292    | 1,008   |     |       | 1,505 | ,     | ,     | 1,643 | 1,527 | 1,472 | 1,224 | 1,535 | , -   | 823 |
| 270 | .,    | 1,118 |     | 1,545 | 1,504 | 1,317 | 1,551 | 1,696 | 1,677 | 1,613 | _     | 1,548 | 1,301  | 728   | 1,303    |         |     | 1,406 | 1,525 | ,     |       | 1,660 | 1,545 | 1,488 | 1,234 | 1,535 |       | 839 |
| 280 | , -   | , -   | 620 | 1,562 | 1,523 | 1,336 | ,     | 1,711 | ,     |       | 1,534 | 1,548 |        |       | 1,313    | ,       |     | 1,423 | 1,544 | ,     |       | 1,676 | 1,562 | 1,504 | 1,242 | 1,535 |       | 853 |
| 290 | , -   | ,     |     | 1,578 | 1,539 | 1,354 | 1,587 | 1,725 | ,     |       | 1,549 | 1,548 | 1,323  | 757   | 1,322    |         |     | 1,439 | 1,560 | ,     | 1,149 | 1,689 | 1,577 | 1,519 | 1,249 | 1,535 | .,    | 867 |
| 300 | , -   | ,     | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | 1,715 |       | 1,558 | 1,548 | 1,324  | 757   |          |         |     | 1,443 | 1,565 | 1,330 | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | .,    | 867 |
| 310 | , .   | ,     | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | , .   | ,     | 1,558 | 1,548 | 1,324  | 757   | ,        |         |     | 1,443 | 1,565 | 1,318 | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | ,     | 867 |
| 320 | , .   | ,     | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | , .   | ,     | 1,558 | 1,548 | 1,324  | 757   | ,        |         |     | 1,443 |       | ,     | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | ,     | 867 |
| 330 | , .   | ,     | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | ,     | ,     | 1,558 | 1,548 | 1,323  | 757   | ,        |         |     | 1,443 |       | ,     |       | 1,701 | 1,588 | 1,530 | 1,255 | ,     | ,     | 867 |
| 340 | , .   | ,     | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | , -   |       | 1,558 | 1,548 | 1,323  | 757   | ,        | ,       |     | 1,443 | 1,565 | ,     |       | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | ,     | 867 |
| 350 | 1,475 | 1,138 | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | 1,715 | 1,654 | 1,558 | 1,548 | 1,323  | 757   | 1,322    | 1,037   | 689 | 1,443 | 1,565 | 1,318 | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | 1,206 | 867 |

| 30 1<br>40 2             | 01<br>0<br>0<br>19<br>117<br>241<br>368 | 0<br>0<br>0<br>2<br>51 | 303<br>0<br>0 | <b>304</b><br>0 | <b>305</b> | 306   | 307   | 308   | 309   | 310   | 311   | 312   | 040   | - 4 | 045 |       |       |     |       |       |       | 40-   | 400   | 400   | 440   | 444   | 440   | 440   | 444 |       |
|--------------------------|-----------------------------------------|------------------------|---------------|-----------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-----|-----|-------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|-------|
| 10<br>20<br>30 1<br>40 2 | 19<br>117<br>241                        | 0                      | 0             |                 | 0          | _     |       |       |       | 0.0   | 311   | 312   | 313   | 314 | 315 | 401   | 402   | 403 | 404   | 405   | 406   | 407   | 408   | 409   | 410   | 411   | 412   | 413   | 414 | 415   |
| 20<br>30 1<br>40 2       | 19<br>117<br>241                        | 2                      | •             | 0               |            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 214 | 0     | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 0     |
| 30 1<br>40 2             | 117<br>241                              |                        | 0             |                 | 0          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 214 | 0     | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 0     |
| 40 2                     | 241                                     | 51                     |               | 4               | 2          | 1     | 2     | 1     | 2     | 0     | 0     | 15    | 2     | 0   | 214 | 19    | 2     | 0   | 5     | 2     | 1     | 2     | 1     | 2     | 0     | 0     | 15    | 2     | 0   | 1     |
|                          |                                         |                        | 6             | 65              | 42         | 21    | 31    | 47    | 58    | 12    | 10    | 123   | 34    | 1   | 218 | 121   | 53    | 6   | 75    | 47    | 23    | 39    | 47    | 58    | 12    | 10    | 123   | 34    | 1   | 21    |
| 50 3                     | 260                                     | 135                    | 28            | 175             | 132        | 84    | 120   | 190   | 202   | 78    | 70    | 278   | 118   | 10  | 243 | 246   | 139   | 29  | 189   | 139   | 89    | 130   | 190   | 203   | 78    | 70    | 278   | 118   | 10  | 88    |
| 30 3                     | 300                                     | 223                    | 58            | 302             | 240        | 169   | 227   | 335   | 345   | 185   | 172   | 437   | 221   | 36  | 286 | 375   | 226   | 59  | 317   | 250   | 176   | 238   | 335   | 346   | 186   | 173   | 437   | 221   | 36  | 175   |
|                          | 496                                     | 304                    | 98            | 422             | 344        | 260   | 333   | 472   | 486   | 291   | 275   | 597   | 322   | 79  |     | 503   | 309   | 100 | 440   | 353   | 269   | 341   | 472   | 487   | 291   | 275   | 597   | 322   | 79  | 265   |
| 70 6                     | 601                                     | 388                    |               | 539             | 444        | 343   | 428   | 586   | 603   | 389   | 370   | 740   | 424   |     |     | 610   | 394   |     | 561   | 456   | 350   | 437   | 586   | 604   | 390   | 370   | 740   | 424   |     | 352   |
|                          | 708                                     | 466                    |               | 650             | 542        | 417   | 521   | 694   | 715   | 482   | 461   | 876   |       |     | 405 | 715   | 471   | 174 | 671   | 553   | 426   | 532   | 694   | 716   | 483   | 461   | 876   | 524   |     | 437   |
|                          | 796                                     | 529                    |               | 743             | 631        | 492   | 610   | 799   | 823   | 560   | 538   | 995   | 612   |     |     | 804   | 534   |     | 764   | 642   | 502   | 621   | 799   | 823   | 561   | 538   | 995   | 612   |     | 515   |
|                          | 874                                     | 591                    |               | 829             | 707        | 564   | 688   | 888   | 912   | 636   |       | 1,094 |       |     | 462 | 881   | 596   |     | 855   | 717   | 573   | 696   | 888   | 913   | 637   |       | 1,094 | 697   |     | 588   |
|                          | 941                                     | 649                    |               | 916             | 772        | 628   | 752   | 967   | 994   | 706   |       |       |       | 309 | _   | 948   | 653   |     | 942   | 786   | 637   | 759   | 967   | 994   | 707   |       | 1,183 | 778   |     | 659   |
|                          | 002                                     | 699                    |               | 989             | 844        | 684   |       | 1,044 | 1,072 | 775   |       | 1,260 |       |     | 512 | 1,010 | 703   |     | 1,014 | 856   | 692   | 823   | 1,044 | 1,073 | 775   | 744   | 1,260 | 852   |     | 725   |
| , -                      | 059                                     | 743                    |               | 1,055           | 908        | 730   |       | 1,117 | 1,146 | 833   |       | 1,325 |       |     | 534 | 1,066 | 748   |     | 1,080 | 919   | 737   | 888   | ,     | 1,147 | 834   | 805   | 1,325 | 917   |     | 784   |
|                          | 108                                     | 782                    |               | 1,116           | 962        | 770   |       | 1,185 | 1,216 | 883   |       | 1,379 |       |     | 552 | 1,113 |       | -   | 1,141 | 971   | 776   | 944   | .,    | 1,217 | 883   | 854   | 1,379 | 973   |     | 834   |
| /                        | 149                                     | 818                    |               | 1,168           | 1,010      | 812   |       | 1,244 | 1,272 | 928   |       | ,     | 1,023 |     | 566 | 1,154 |       | _   | 1,192 | 1,019 | 821   | 992   | ,     | 1,272 | 929   | 898   | 1,421 | 1,023 |     | 876   |
|                          | 184                                     | 849                    |               | ,               | 1,054      | 856   |       | 1,290 | 1,317 | 975   |       | ,     | , -   |     | 580 | 1,189 | 853   |     | , -   | 1,062 |       | 1,034 | ,     | 1,317 | 976   | 941   | 1,459 | 1,071 |     | 916   |
|                          | 215                                     | 878                    |               | 1,256           | 1,094      | 894   |       | 1,332 | ,     | 1,018 |       | ,     | 1,114 |     | 593 | 1,220 |       | 382 | 1,277 | 1,101 |       | 1,071 | 1,332 | 1,360 | 1,018 | 983   | 1,495 | 1,114 |     | 959   |
|                          | 242                                     | 903                    |               | 1,294           | 1,128      | 929   | ,     | 1,374 | 1,404 | 1,057 | , -   | ,     | , -   |     | 606 | 1,246 |       |     | 1,315 |       |       | •     | •     | 1,404 | 1,058 |       | 1,526 | 1,152 |     | 997   |
|                          | 265                                     | 926                    |               | 1,328           | 1,159      | 957   | 1,134 | 1,413 | ,     | 1,096 |       | 1,552 |       |     | 618 | 1,270 |       |     | ,     | ,     |       | ,     | ,     | 1,444 | 1,096 | 1,058 |       | 1,188 |     | 1,033 |
|                          | 288                                     | 947                    |               | 1,358           |            |       | , -   | 1,448 | ,     |       |       | 1,573 | , .   |     | 629 | 1,291 | 950   |     |       | ,     |       |       | 1,448 | ,     | ,     | 1,092 |       | 1,219 |     | 1,065 |
|                          | 309                                     | 968                    |               | 1,388           | , -        | 1,006 |       |       |       | ,     | ,     |       |       |     | 640 | 1,312 | 970   |     |       | 1,220 | ,     | ,     | ,     |       | 1,162 | 1,124 | ,     | 1,247 |     | 1,097 |
|                          | 329                                     |                        |               | ,               | 1,244      | 1,032 |       | 1,506 |       | 1,188 |       |       | 1,269 |     |     | 1,331 | 990   |     | •     |       |       |       |       |       |       | 1,153 |       | 1,269 |     | 1,125 |
|                          | 347                                     | 1,006                  |               | 1,451           | 1,271      | 1,055 |       | 1,531 | 1,562 | 1,210 |       | 1,573 |       |     | 658 | 1,350 | 1,008 |     |       |       |       |       |       | 1,562 | 1,210 | 1,177 | 1,573 | 1,289 |     | 1,149 |
|                          |                                         |                        |               | 1,478           | 1,295      | 1,078 |       | 1,553 | ,     |       |       | 1,573 | 1,306 |     | _   | 1,365 | 1,022 |     |       |       |       | 1,267 | 1,553 | 1,584 | 1,231 | 1,198 | 1,573 | 1,306 |     | 1,170 |
|                          |                                         | 1,034                  |               | 1,503           |            | 1,099 | 1,292 | 1,574 |       |       |       |       | 1,320 |     | 672 |       | 1,035 |     |       | 1,320 |       | 1,289 |       | 1,607 | 1,250 |       | 1,573 | 1,320 |     | 1,188 |
| , -                      |                                         | 1,046                  |               | 1,525           | 1,341      | 1,118 |       | 1,594 | 1,628 |       |       |       |       |     | 677 | -     | 1,047 |     |       | 1,342 |       | 1,309 |       | 1,628 | 1,269 |       | 1,573 | 1,334 |     | 1,204 |
|                          |                                         | ,                      |               | 1,545           | 1,362      | 1,136 |       | 1,613 | ,     |       |       | 1,573 |       |     | 682 | 1,406 | 1,057 |     |       | 1,363 |       | ,     |       | 1,647 | 1,286 | ,     | 1,573 | 1,348 |     | 1,220 |
| /                        |                                         | 1,066                  |               | 1,562           | 1,381      | 1,153 | ,     | 1,630 | ,     | ,     | ,     |       | 1,359 |     |     | 1,419 | ,     |     | ,     | ,     | ,     | 1,348 | ,     | 1,664 | 1,303 | 1,265 |       | 1,359 | _   | 1,234 |
| , ,                      |                                         | 1,075                  |               | 1,578           | ,          |       | ,     | 1,645 |       |       |       |       | 1,370 |     |     |       | ,     |     | ,     | 1,400 |       | 1,366 | •     | 1,679 |       | 1,280 |       | 1,370 |     | 1,248 |
| ,                        |                                         | 1,075                  |               | ,               | 1,402      | 1,171 |       | 1,659 | ,     | 1,330 |       | 1,573 |       |     | 695 | ,     | 1,075 |     |       | 1,402 |       | 1,369 |       | 1,689 | 1,330 | 1,291 |       | 1,364 |     | 1,251 |
| ,                        |                                         | 1,075                  |               | ,               | 1,402      | 1,171 |       | 1,659 | ,     | 1,330 |       |       | 1,364 |     |     | 1,430 | 1,075 |     | 1,588 | ,     |       | 1,369 | ,     | 1,689 | 1,330 | ,     | 1,573 | 1,364 |     | 1,251 |
| ,                        |                                         | 1,075                  |               | 1,581           | 1,402      | 1,171 | 1,366 | 1,659 | ,     | 1,330 |       |       |       |     | 695 | 1,430 | 1,075 |     | 1,584 | 1,402 |       | 1,369 | 1,659 | 1,689 | 1,330 | 1,291 | 1,573 | 1,364 |     | 1,251 |
| , ,                      |                                         | 1,075                  |               | 1,581           | 1,402      | 1,171 |       | 1,659 |       | 1,330 |       |       |       |     | 695 | 1,430 | 1,075 |     | 1,580 | 1,402 |       | 1,369 | 1,659 | 1,689 | 1,330 | 1,291 | 1,573 | 1,364 |     | 1,251 |
| , ,                      | _                                       | 1,075                  |               | ,               | 1,402      | 1,171 | 1,366 | 1,659 | ,     | 1,330 |       |       |       | 802 |     | 1,430 |       | 509 | 1,576 | ,     |       | 1,369 | 1,659 | 1,689 | 1,330 |       | 1,573 | 1,364 |     | 1,251 |
| 350 1,4                  | 430                                     | 1,075                  | 509           | 1,581           | 1,402      | 1,171 | 1,366 | 1,659 | 1,689 | 1,330 | 1,291 | 1,573 | 1,364 | 802 | 695 | 1,430 | 1,075 | 509 | 1,572 | 1,402 | 1,171 | 1,369 | 1,659 | 1,689 | 1,330 | 1,291 | 1,573 | 1,364 | 802 | 1,251 |

# Appendix B: Old Seral Forest Cover Requirements by Ministerial Order Area/LU/Site Series Surrogate

Area summary by MO/LU/SiteSeriesSurrogate for units with THLB area greater than 1 ha in the TSA. The long term THLB area shown here includes TL areas that will revert to the TSA in the future (135,343 ha + 5,279 ha = 140,622 ha) minus 302 ha of deciduous leading stands without site series surrogate classification and minus 22 ha of units with less than 1 ha in the THLB, totaling 140,297 ha. The current condition field describes whether a) Met NTHLB: the old growth target is currently completely satisfied in non THLB areas, b) Met THLB: the old growth target is currently satisfied but needs to include old growth areas from the THLB and, c) Not Met: the current old growth area is not enough to satisfy the target.

| MO<br>2009 | Landscape Unit | Site Series<br>Surrogate        | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area | Surplus<br>/ Deficit | Current<br>Condition   |
|------------|----------------|---------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|----------------------------------|----------------------|------------------------|
| 0110       |                | 014/11 4 0 14 1                 | 205          | 1.001                       | 1 2 1 2               |                                | 10.1                   | (ha)                             | 700                  | 14 ( ) IT II D         |
| CNC        | Braden         | CWHvm1 Cw Med<br>CWHvm1 Cw Poor | 265<br>552   | 1,381<br>2,673              | 1,646<br>3,225        | 28<br>28                       | 461<br>903             | 1,170<br>1,546                   | 709<br>643           | Met NTHLB<br>Met NTHLB |
|            |                | CWHvm1 HB Good                  | 76           | 2,073                       | 120                   | 25                             | 30                     | 1,340                            | -30                  | Not Met                |
|            |                | CWHvm1 HB Med                   | 1,052        | 4,411                       | 5,463                 | 25                             | 1,366                  | 3,665                            | 2,299                | Met NTHLB              |
|            |                | CWHvm1 HB Poor                  | 120          | 3,875                       | 3,995                 | 25                             | 999                    | 2,221                            | 1,223                | Met NTHLB              |
|            |                | CWHvm1 S Good                   | 24           | 68                          | 92                    | 25                             | 23                     | 69                               | 46                   | Met NTHLB              |
|            |                | CWHvm1 S Med                    | 88           | 185                         | 272                   | 25                             | 68                     | 134                              | 66                   | Met NTHLB              |
|            |                | CWHvm1 S PoorPl                 | 10           | 174                         | 183                   | 28                             | 51                     | 85                               | 34                   | Met NTHLB              |
|            |                | CWHvm2 Cw Poor                  | 12           | 131                         | 144                   | 28                             | 40                     | 42                               | 1                    | Met THLB               |
|            |                | CWHvm2 HB Med                   | 17<br>2      | 353<br>903                  | 370<br>905            | 25                             | 92<br>226              | 298<br>478                       | 205                  | Met NTHLB<br>Met NTHLB |
|            | Braden Total   | CWHvm2 HB Poor                  | 2,218        | 14,198                      | 16,416                | 25<br>26                       | 4,260                  | 9,707                            | 252<br>5,447         | MELINIALB              |
|            | Clyak          | CWHvh2 Cw Med                   | 121          | 65                          | 186                   | 29                             | 54                     | 135                              | 81                   | Met NTHLB              |
|            |                | CWHvh2 Cw Poor                  | 109          | 418                         | 527                   | 29                             | 153                    | 439                              | 286                  | Met NTHLB              |
|            |                | CWHvh2 Fd Med                   | 6            | 0                           | 6                     | 27                             | 2                      | 0                                | -2                   | Not Met                |
|            |                | CWHvm1 Cw Good                  | 133          | 10                          | 142                   | 25                             | 36                     | 0                                | -36                  | Not Met                |
|            |                | CWHvm1 Cw Med                   | 1,315        | 488                         | 1,803                 | 28                             | 505                    | 991                              | 486                  | Met THLB               |
|            |                | CWHvm1 Cw Poor                  | 1,150        | 2,396<br>5                  | 3,545                 | 28                             | 993<br>8               | 3,268                            | 2,276<br>-8          | Met NTHLB              |
|            |                | CWHvm1 Fd Med<br>CWHvm1 Fd Poor | 31<br>32     | 5<br>5                      | 36<br>37              | 21<br>21                       | 8                      | 0                                | -o<br>-8             | Not Met<br>Not Met     |
|            |                | CWHvm1 HB Good                  | 517          | 389                         | 906                   | 25                             | 226                    | 91                               | -135                 | Not Met                |
|            |                | CWHvm1 HB Med                   | 3,038        | 2,267                       | 5,305                 | 25                             | 1,326                  | 2,432                            | 1,106                | Met NTHLB              |
|            |                | CWHvm1 HB Poor                  | 60           | 272                         | 332                   | 25                             | 83                     | 285                              | 202                  | Met NTHLB              |
|            |                | CWHvm1 S Good                   | 138          | 370                         | 509                   | 25                             | 127                    | 291                              | 163                  | Met NTHLB              |
|            |                | CWHvm1 S Med                    | 87           | 157                         | 244                   | 25                             | 61                     | 119                              | 58                   | Met NTHLB              |
|            |                | CWHvm1 S PoorPl                 | 17           | 64                          | 81                    | 28                             | 23                     | 56                               | 34                   | Met NTHLB              |
|            |                | CWHvm2 Cw Good<br>CWHvm2 Cw Med | 8<br>144     | 0<br>27                     | 8<br>170              | 59<br>28                       | 5<br>48                | 0<br>68                          | -5<br>20             | Not Met<br>Met THLB    |
|            |                | CWHvm2 Cw Poor                  | 655          | 3,358                       | 4,012                 | 28                             | 1,123                  | 3,691                            | 2,567                | Met NTHLB              |
|            |                | CWHvm2 Fd Med                   | 8            | 16                          | 24                    | 49                             | 12                     | 0,001                            | -12                  | Not Met                |
|            |                | CWHvm2 Fd Poor                  | 8            | 1                           | 9                     | 49                             | 4                      | 0                                | -4                   | Not Met                |
|            |                | CWHvm2 HB Good                  | 149          | 98                          | 247                   | 25                             | 62                     | 0                                | -62                  | Not Met                |
|            |                | CWHvm2 HB Med                   | 332          | 916                         | 1,248                 | 25                             | 312                    | 976                              | 664                  | Met NTHLB              |
|            |                | CWHvm2 HB Poor                  | 111          | 871                         | 982                   | 25                             | 245                    | 910                              | 664                  | Met NTHLB              |
|            |                | CWHvm2 S Med<br>MHmm1 Cw Poor   | 2<br>32      | 1<br>869                    | 2<br>900              | 59<br>28                       | 1<br>252               | 0<br>821                         | -1<br>569            | Not Met<br>Met NTHLB   |
|            |                | MHmm1 HB Good                   | 4            | 2                           | 5                     | 59                             | 3                      | 021                              | -3                   | Not Met                |
|            |                | MHmm1 HB Med                    | 13           | 38                          | 52                    | 25                             | 13                     | 36                               | 23                   | Met NTHLB              |
|            |                | MHmm1 HB Poor                   | 10           | 234                         | 244                   | 25                             | 61                     | 235                              | 174                  | Met NTHLB              |
|            | Clyak Total    |                                 | 8,228        | 13,334                      | 21,563                | 31                             | 5,745                  | 14,842                           | 9,097                |                        |
|            | Dean           | CWHds2 Cw Good                  | 22           | 92                          | 114                   | 50                             | 57                     | 8                                | -49                  | Not Met                |
|            |                | CWHds2 Fd Good<br>CWHds2 Fd Med | 96<br>77     | 135                         | 231                   | 42<br>30                       | 97<br>387              | 0<br>108                         | -97<br>-279          | Not Met<br>Not Met     |
|            |                | CWHds2 Fd Med<br>CWHds2 Fd Poor | 39           | 1,211<br>1,114              | 1,289<br>1,153        | 36                             | 30 <i>1</i><br>415     | 154                              | -279<br>-261         | Not Met                |
|            |                | CWHds2 HB Good                  | 8            | 45                          | 53                    | 60                             | 32                     | 0                                | -32                  | Not Met                |
|            |                | CWHds2 HB Med                   | 236          | 1,350                       | 1,586                 | 43                             | 682                    | 217                              | -465                 | Not Met                |
|            |                | CWHms2 HB Good                  | 2            | 129                         | 131                   | 38                             | 50                     | 0                                | -50                  | Not Met                |
|            |                | CWHms2 HB Med                   | 158          | 604                         | 762                   | 38                             | 290                    | 383                              | 93                   | Met THLB               |
|            |                | CWHws2 Fd Good                  | 18           | 1                           | 19                    | 42                             | 8                      | 0                                | -8<br>76             | Not Met                |
|            |                | CWHws2 HB Good                  | 47<br>304    | 81<br>3 444                 | 127                   | 60<br>43                       | 76<br>1.612            | 1 973                            | -76                  | Not Met                |
|            |                | CWHws2 HB Med<br>MHmm2 HB Med   | 304<br>28    | 3,444<br>1,864              | 3,748<br>1,892        | 43<br>42                       | 1,612<br>795           | 1,873<br>514                     | 262<br>-281          | Met NTHLB<br>Not Met   |
|            | Dean Total     | IIIII III IVICU                 | 1,035        | 10,070                      | 11,104                | 44                             | 4,499                  | 3,257                            | -1,242               | . TOT WIST             |
|            | Denny          | CWHvh2 Cw Med                   | 349          | 850                         | 1,199                 | 29                             | 348                    | 287                              | -61                  | Not Met                |
|            | •              | CWHvh2 Cw Poor                  | 1,246        | 8,897                       | 10,143                | 29                             | 2,942                  | 7,055                            | 4,113                | Met NTHLB              |
|            |                | CWHvh2 HB Med                   | 373          | 1,168                       | 1,540                 | 29                             | 447                    | 681                              | 234                  | Met NTHLB              |
|            | D T            | CWHvh2 HB Poor                  | 4            | 1,476                       | 1,480                 | 29                             | 429                    | 1,022                            | 593                  | Met NTHLB              |
| <u> </u>   | Denny Total    |                                 | 1,972        | 12,391                      | 14,363                | 29                             | 4,165                  | 9,044                            | 4,879                |                        |

| MO<br>2009 | Landscape Unit                   | Site Series<br>Surrogate          | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition   |
|------------|----------------------------------|-----------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|------------------------|
|            | Don Peninsula                    | CWHvh2 Cw Med                     | 1,960        | 711                         | 2,671                 | 29                             | 774                    | 1,595                                    | 821                  | Met THLB               |
|            |                                  | CWHvh2 Cw Poor                    | 477          | 4,174                       | 4,651                 | 29                             | 1,349                  | 4,435                                    | 3,087                | Met NTHLB              |
|            |                                  | CWHvh2 HB Med                     | 1,063        | 1,220                       | 2,283                 | 29                             | 662                    | 1,640                                    | 977                  | Met NTHLB              |
|            |                                  | CWHvh2 HB Poor                    | 457          | 2,045                       | 2,502                 | 29                             | 726                    | 1,824                                    | 1,098                | Met NTHLB              |
|            |                                  | CWHvh2 S Med<br>CWHvh2 S PoorPl   | 15<br>124    | 1<br>32                     | 16<br>156             | 59<br>29                       | 9<br>45                | 0<br>133                                 | -9<br>88             | Not Met                |
|            |                                  | CWHVII2 S POOIFI CWHVm1 Cw Med    | 603          | 101                         | 704                   | 29                             | 197                    | 643                                      | 446                  | Met THLB<br>Met THLB   |
|            |                                  | CWHvm1 Cw Ned                     | 675          | 895                         | 1,570                 | 28                             | 440                    | 1,112                                    | 672                  | Met NTHLB              |
|            |                                  | CWHvm1 HB Med                     | 354          | 169                         | 523                   | 25                             | 131                    | 490                                      | 359                  | Met NTHLB              |
|            |                                  | CWHvm1 HB Poor                    | 33           | 43                          | 76                    | 25                             | 19                     | 76                                       | 57                   | Met NTHLB              |
|            |                                  | CWHvm1 S Med                      | 195          | 283                         | 479                   | 25                             | 120                    | 479                                      | 359                  | Met NTHLB              |
|            |                                  | CWHvm1 S PoorPl                   | 463          | 161                         | 624                   | 28                             | 175                    | 349                                      | 174                  | Met THLB               |
|            |                                  | CWHvm2 Cw Med                     | 3            | 1                           | 4                     | 28                             | 1                      | 4                                        | 3                    | Met THLB               |
|            | Dan Daninaula Tatal              | CWHvm2 Cw Poor                    | 7            | 0.000                       | 11                    | 28                             | 3                      | 11<br>12,790                             | 8                    | Met NTHLB              |
|            | Don Peninsula Total Doos/Dallery | CWHvh2 Cw Med                     | 6,430<br>152 | 9,838                       | 16,269<br>175         | 30<br>29                       | 4,650<br>51            | 12,790                                   | 8,139<br>91          | Met THLB               |
|            | D003/Dallery                     | CWHvh2 Cw Poor                    | 138          | 305                         | 443                   | 29                             | 128                    | 420                                      | 291                  | Met NTHLB              |
|            |                                  | CWHvh2 Fd Med                     | 1            | 0                           | 1                     | 27                             | 0                      | 0                                        | 0                    | Not Met                |
|            |                                  | CWHvh2 HB Good                    | 18           | 7                           | 25                    | 25                             | 6                      | 0                                        | -6                   | Not Met                |
|            |                                  | CWHvh2 HB Med                     | 145          | 60                          | 205                   | 29                             | 59                     | 24                                       | -36                  | Not Met                |
| 1          |                                  | CWHvh2 S Med                      | 30           | 13                          | 43                    | 59                             | 25                     | 15                                       | -11                  | Not Met                |
|            |                                  | CWHvm1 Cw Med                     | 86           | 866                         | 952                   | 28                             | 267                    | 789                                      | 522                  | Met NTHLB              |
|            |                                  | CWHvm1 Cw Poor<br>CWHvm1 HB Good  | 108<br>113   | 1,055<br>306                | 1,163<br>419          | 28<br>25                       | 326<br>105             | 946<br>63                                | 620<br>-41           | Met NTHLB<br>Not Met   |
|            |                                  | CWHVIII HB Good                   | 1,036        | 3,581                       | 4,617                 | 25<br>25                       | 1,154                  | 3,284                                    | 2,129                | Met NTHLB              |
|            |                                  | CWHvm1 HB Poor                    | 6            | 480                         | 485                   | 25                             | 1,134                  | 367                                      | 246                  | Met NTHLB              |
|            |                                  | CWHvm1 S Good                     | 25           | 239                         | 264                   | 25                             | 66                     | 181                                      | 115                  | Met NTHLB              |
|            |                                  | CWHvm1 S Med                      | 148          | 65                          | 213                   | 25                             | 53                     | 0                                        | -53                  | Not Met                |
|            |                                  | CWHvm2 Cw Med                     | 126          | 242                         | 368                   | 28                             | 103                    | 329                                      | 226                  | Met NTHLB              |
|            |                                  | CWHvm2 Cw Poor                    | 329          | 2,194                       | 2,524                 | 28                             | 707                    | 2,275                                    | 1,568                | Met NTHLB              |
|            |                                  | CWHvm2 Fd Med<br>CWHvm2 HB Good   | 4<br>23      | 0                           | 4<br>23               | 49<br>25                       | 2<br>6                 | 0                                        | -2<br>-5             | Not Met<br>Not Met     |
|            |                                  | CWHVIII2 HB Good<br>CWHvm2 HB Med | 377          | 2,016                       | 2,393                 | 25<br>25                       | 598                    | 2,016                                    | 1,418                | Met NTHLB              |
|            |                                  | CWHvm2 HB Poor                    | 39           | 1,806                       | 1,845                 | 25                             | 461                    | 1,471                                    | 1,009                | Met NTHLB              |
|            |                                  | CWHvm2 S Good                     | 2            | 0                           | 2                     | 59                             | 1                      | 2                                        | 1                    | Met THLB               |
|            |                                  | CWHvm2 S Med                      | 43           | 3                           | 45                    | 59                             | 27                     | 0                                        | -27                  | Not Met                |
|            |                                  | MHmm1 Cw Poor                     | 56           | 645                         | 702                   | 28                             | 196                    | 644                                      | 448                  | Met NTHLB              |
|            |                                  | MHmm1 Fd Med                      | 2            | 0                           | 2                     | 0                              | 0                      | 0                                        | 0                    | Met NTHLB              |
|            |                                  | MHmm1 HB Med<br>MHmm1 HB Poor     | 14<br>13     | 282<br>659                  | 295<br>672            | 25<br>25                       | 74<br>168              | 239<br>534                               | 165<br>366           | Met NTHLB<br>Met NTHLB |
|            | Doos/Dallery Total               | WITHINITY TID T OOI               | 3,032        | 14,849                      | 17,880                | 30                             | 4,705                  | 13,737                                   | 9,031                | WELLITTED              |
|            | Ellerslie                        | CWHvh2 Cw Med                     | 94           | 294                         | 388                   | 29                             | 112                    | 326                                      | 214                  | Met NTHLB              |
|            |                                  | CWHvh2 Cw Poor                    | 86           | 1,478                       | 1,564                 | 29                             | 454                    | 1,010                                    | 557                  | Met NTHLB              |
|            |                                  | CWHvh2 HB Med                     | 43           | 388                         | 431                   | 29                             | 125                    | 228                                      | 103                  | Met NTHLB              |
|            |                                  | CWHvm1 Cw Med                     | 1,588        | 1,496                       | 3,084                 | 28                             | 864                    | 1,473                                    | 610                  | Met THLB               |
|            |                                  | CWHvm1 LID Mod                    | 602          | 2,752                       | 3,353                 | 28<br>25                       | 939<br>463             | 2,067                                    | 1,129<br>1,030       | Met NTHLB              |
|            |                                  | CWHvm1 HB Med<br>CWHvm1 HB Poor   | 439<br>22    | 1,412<br>779                | 1,850<br>802          | 25<br>25                       | 200                    | 1,493<br>411                             | 211                  | Met NTHLB<br>Met NTHLB |
|            |                                  | CWHvm1 S Med                      | 41           | 118                         | 159                   | 25                             | 40                     | 156                                      | 117                  | Met NTHLB              |
| 1          |                                  | CWHvm1 S PoorPI                   | 32           | 169                         | 202                   | 28                             | 56                     | 106                                      | 50                   | Met NTHLB              |
|            |                                  | CWHvm2 Cw Med                     | 41           | 41                          | 81                    | 28                             | 23                     | 52                                       | 29                   | Met THLB               |
| 1          |                                  | CWHvm2 Cw Poor                    | 19           | 201                         | 220                   | 28                             | 62                     | 170                                      | 108                  | Met NTHLB              |
|            |                                  | CWHvm2 HB Med                     | 5            | 110                         | 115                   | 25                             | 29                     | 74                                       | 46                   | Met NTHLB              |
|            | Ellerslie Total                  | MHwh1 Cw Med                      | 3,013        | 9,262                       | 27<br>12,276          | 68<br>30                       | 18<br>3,384            | 27<br>7,596                              | 9<br>4,212           | Met NTHLB              |
|            | Evans                            | CWHvh2 Cw Med                     | 481          | 2,197                       | 2,678                 | 49                             | 1,312                  | 1,690                                    | 378                  | Met NTHLB              |
|            |                                  | CWHvh2 Cw Poor                    | 862          | 16,696                      | 17,559                | 49                             | 8,604                  | 10,816                                   | 2,213                | Met NTHLB              |
| 1          |                                  | CWHvh2 HB Good                    | 3            | 58                          | 61                    | 42                             | 26                     | 53                                       | 27                   | Met NTHLB              |
|            |                                  | CWHvh2 HB Med                     | 119          | 2,231                       | 2,351                 | 49                             | 1,152                  | 1,309                                    | 157                  | Met NTHLB              |
| 1          |                                  | CWHvh2 S Good                     | 30           | 74                          | 104                   | 59                             | 61                     | 0                                        | -61                  | Not Met                |
|            |                                  | CWHym1 Cw Good                    | 23           | 72                          | 95<br>22              | 59<br>42                       | 56                     | 95                                       | 39                   | Met NTHLB              |
| 1          |                                  | CWHvm1 Cw Good<br>CWHvm1 Cw Med   | 21<br>53     | 2<br>21                     | 22<br>74              | 42<br>47                       | 9<br>35                | 0<br>38                                  | -9<br>3              | Not Met<br>Met THLB    |
|            |                                  | CWHvm1 Cw Poor                    | 6            | 294                         | 300                   | 47                             | 141                    | 254                                      | 113                  | Met NTHLB              |
| 1          |                                  | CWHvm1 HB Med                     | 13           | 7                           | 20                    | 42                             | 8                      | 6                                        | -3                   | Not Met                |
|            |                                  | CWHvm2 Cw Med                     | 5            | 134                         | 139                   | 47                             | 65                     | 129                                      | 64                   | Met NTHLB              |
|            |                                  | CWHvm2 HB Med                     | 3            | 71                          | 74                    | 42                             | 31                     | 56                                       | 24                   | Met NTHLB              |
|            | Evans Total                      |                                   | 1,619        | 21,859                      | 23,478                | 48                             | 11,501                 | 14,446                                   | 2,945                |                        |
|            | Fish Egg                         | CWHvh2 Cw Good                    | 41           | 4 070                       | 45                    | 63                             | 29                     | 0                                        | -29                  | Not Met                |
|            |                                  | CWHvh2 Cw Med<br>CWHvh2 Cw Poor   | 2,717        | 1,678                       | 4,395<br>27,783       | 68<br>68                       | 2,988<br>18,892        | 2,658<br>25,755                          | -330<br>6.863        | Not Met                |
|            |                                  | CWHvh2 HB Good                    | 4,593<br>115 | 23,189<br>156               | 27,783<br>271         | 59                             | 18,892                 | 25,755<br>0                              | 6,863<br>-160        | Met NTHLB<br>Not Met   |
|            |                                  | CWHvh2 HB Med                     | 642          | 997                         | 1,639                 | 68                             | 1,115                  | 684                                      | -431                 | Not Met                |
|            | 1                                | CWHvh2 HB Poor                    | 3            | 106                         | 109                   | 68                             | 74                     | 29                                       | -45                  | Not Met                |
| 1          |                                  |                                   |              |                             |                       |                                |                        |                                          |                      |                        |
| 1          |                                  | CWHvh2 S Good<br>CWHvh2 S PoorPl  | 19<br>16     | 27<br>0                     | 46<br>16              | 59<br>68                       | 27<br>11               | 17<br>0                                  | -10<br>-11           | Not Met<br>Not Met     |

| MO<br>2009 | Landscape Unit                   | Site Series<br>Surrogate         | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition   |
|------------|----------------------------------|----------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|------------------------|
|            |                                  | MHwh1 Cw Poor                    | 1            | 221                         | 222                   | 68                             | 151                    | 222                                      | 71                   | Met NTHLB              |
|            | Fish Egg Total                   |                                  | 8,147        | 26,379                      | 34,526                | 65                             | 23,447                 | 29,366                                   | 5,919                |                        |
|            | Hunter                           | CWHvh2 Cw Med<br>CWHvh2 Cw Poor  | 111<br>329   | 195<br>7,503                | 306<br>7,832          | 49<br>49                       | 150<br>3,838           | 232<br>7,136                             | 82<br>3,298          | Met THLB<br>Met NTHLB  |
|            |                                  | CWHvh2 HB Good                   | 329<br>4     | 11                          | 1,032                 | 49                             | 3,030                  | 7,130                                    | 3,296<br>-6          | Not Met                |
|            |                                  | CWHvh2 HB Med                    | 228          | 490                         | 718                   | 49                             | 352                    | 105                                      | -247                 | Not Met                |
|            |                                  | CWHvh2 HB Poor                   | 84           | 250                         | 334                   | 49                             | 164                    | 300                                      | 136                  | Met NTHLB              |
|            | Hunter Total                     | CWHvh2 S Med                     | 779          | 8,449                       | 9,228                 | 59<br>50                       | 14<br>4,523            | 7,772                                    | -14<br>3,249         | Not Met                |
|            | Johnston                         | CMAunp Cw Poor                   | 20           | 80                          | 100                   | 26                             | 26                     | 100                                      | 74                   | Met NTHLB              |
|            |                                  | CWHvh2 Cw Med                    | 1,201        | 804                         | 2,004                 | 29                             | 581                    | 1,855                                    | 1,273                | Met NTHLB              |
|            |                                  | CWHvh2 Cw Poor                   | 2,571        | 5,016                       | 7,587                 | 29                             | 2,200                  | 7,186                                    | 4,986                | Met NTHLB              |
|            |                                  | CWHvh2 HB Good<br>CWHvh2 HB Med  | 68<br>1,071  | 150<br>867                  | 217<br>1,938          | 25<br>29                       | 54<br>562              | 19<br>1,671                              | -35<br>1,109         | Not Met<br>Met NTHLB   |
|            |                                  | CWHvh2 S Good                    | 35           | 56                          | 91                    | 59                             | 54                     | 74                                       | 20                   | Met THLB               |
|            |                                  | CWHvh2 S PoorPl                  | 2            | 31                          | 32                    | 29                             | 9                      | 32                                       | 23                   | Met NTHLB              |
|            |                                  | CWHvm1 Cw Med<br>CWHvm1 Cw Poor  | 43<br>194    | 10<br>309                   | 53<br>503             | 28<br>28                       | 15<br>141              | 53<br>455                                | 38<br>315            | Met THLB<br>Met NTHLB  |
|            |                                  | CWHvm1 HB Good                   | 42           | 7                           | 48                    | 25                             | 12                     | 455                                      | -9                   | Not Met                |
|            |                                  | CWHvm1 HB Med                    | 242          | 95                          | 336                   | 25                             | 84                     | 218                                      | 134                  | Met THLB               |
|            |                                  | CWHvm1 HB Poor                   | 8            | 50                          | 58                    | 25                             | 15                     | 53                                       | 38                   | Met NTHLB              |
|            |                                  | CWHvm1 S Good<br>CWHvm2 Cw Med   | 4<br>124     | 4<br>85                     | 8<br>209              | 25<br>28                       | 2<br>59                | 0<br>208                                 | -2<br>150            | Not Met<br>Met NTHLB   |
|            |                                  | CWHvm2 Cw Poor                   | 745          | 2,547                       | 3,292                 | 28                             | 922                    | 3,071                                    | 2,150                | Met NTHLB              |
|            |                                  | CWHvm2 HB Good                   | 2            | 0                           | 2                     | 25                             | 1                      | 0                                        | -1                   | Not Met                |
|            |                                  | CWHvm2 HB Med<br>CWHvm2 HB Poor  | 192          | 328<br>231                  | 520<br>232            | 25<br>25                       | 130<br>58              | 476<br>208                               | 346<br>150           | Met NTHLB<br>Met NTHLB |
|            |                                  | MHmm1 Cw Poor                    | 1<br>36      | 339                         | 232<br>374            | 25<br>28                       | 105                    | 372                                      | 267                  | Met NTHLB              |
|            |                                  | MHwh1 Cw Med                     | 5            | 1                           | 6                     | 68                             | 4                      | 6                                        | 2                    | Met THLB               |
|            |                                  | MHwh1 Cw Poor                    | 84           | 630                         | 714                   | 29                             | 207                    | 710                                      | 503                  | Met NTHLB              |
|            | Johnston Total                   | MHwh1 HB Med                     | 6,692        | 63<br>11,701                | 66<br>18,393          | 68<br>32                       | 45<br>5,285            | 56<br>16,827                             | 11<br>11,542         | Met NTHLB              |
|            | Jump Across                      | CWHms2 Cw Good                   | 81           | 13                          | 94                    | 53                             | 50                     | 0                                        | -50                  | Not Met                |
|            | ,                                | CWHms2 Cw Med                    | 13           | 50                          | 63                    | 53                             | 33                     | 0                                        | -33                  | Not Met                |
|            |                                  | CWHms2 Fd Good                   | 23           | 6                           | 29                    | 53                             | 15<br>82               | 0                                        | -15                  | Not Met                |
|            |                                  | CWHms2 Fd Poor<br>CWHms2 HB Good | 6<br>55      | 195<br>164                  | 201<br>219            | 41<br>53                       | 82<br>116              | 86<br>0                                  | -116                 | Met NTHLB<br>Not Met   |
|            |                                  | CWHms2 HB Med                    | 102          | 2,613                       | 2,714                 | 53                             | 1,439                  | 1,281                                    | -157                 | Not Met                |
|            |                                  | CWHvm3 HB Med                    | 12           | 1,551                       | 1,563                 | 59                             | 922                    | 1,056                                    | 134                  | Met NTHLB              |
|            |                                  | CWHws2 Cw Good<br>CWHws2 HB Good | 13<br>3      | 0<br>76                     | 13<br>78              | 50<br>60                       | 7<br>47                | 0                                        | -7<br>-47            | Not Met<br>Not Met     |
|            |                                  | CWHws2 HB Med                    | 25           | 2,119                       | 2,145                 | 60                             | 1,287                  | 1,004                                    | -283                 | Not Met                |
|            | Jump Across Total                |                                  | 333          | 6,786                       | 7,118                 | 54                             | 3,998                  | 3,428                                    | -570                 |                        |
|            | Kilbella/Chuckwalla              | CWHvh2 Cw Med                    | 8            | 22                          | 30                    | 29                             | 9                      | 9                                        | 0                    | Not Met                |
|            |                                  | CWHvh2 Fd Med<br>CWHvm1 Cw Good  | 22<br>42     | 0<br>15                     | 22<br>57              | 27<br>25                       | 6<br>14                | 0                                        | -6<br>-14            | Not Met<br>Not Met     |
|            |                                  | CWHvm1 Cw Med                    | 788          | 609                         | 1,397                 | 28                             | 391                    | 972                                      | 581                  | Met NTHLB              |
|            |                                  | CWHvm1 Cw Poor                   | 1,052        | 1,800                       | 2,851                 | 28                             | 798                    | 2,730                                    | 1,932                | Met NTHLB              |
|            |                                  | CWHvm1 Fd Good<br>CWHvm1 Fd Med  | 16<br>15     | 5<br>0                      | 21<br>16              | 21<br>21                       | 4<br>3                 | 0                                        | -4<br>-3             | Not Met<br>Not Met     |
|            |                                  | CWHvm1 HB Good                   | 418          | 482                         | 900                   | 25                             | 225                    | 6                                        | -219                 | Not Met                |
|            |                                  | CWHvm1 HB Med                    | 1,841        | 4,167                       | 6,008                 | 25                             | 1,502                  | 4,550                                    | 3,048                | Met NTHLB              |
|            |                                  | CWHvm1 HB Poor<br>CWHvm1 S Good  | 38<br>246    | 565<br>1,058                | 603<br>1,304          | 25<br>25                       | 151<br>326             | 558<br>247                               | 408<br>-79           | Met NTHLB<br>Not Met   |
|            |                                  | CWHvm1 S Med                     | 219          | 242                         | 461                   | 25<br>25                       | 326<br>115             | 18                                       | -79<br>-98           | Not Met                |
|            |                                  | CWHvm2 Cw Med                    | 86           | 115                         | 201                   | 28                             | 56                     | 143                                      | 87                   | Met NTHLB              |
|            |                                  | CWHvm2 Cw Poor                   | 537          | 2,799                       | 3,336                 | 28                             | 934                    | 3,168                                    | 2,234                | Met NTHLB              |
|            |                                  | CWHvm2 Fd Good<br>CWHvm2 Fd Med  | 3            | 0                           | 3                     | 49<br>49                       | 1<br>2                 | 0                                        | -1<br>-2             | Not Met<br>Not Met     |
|            |                                  | CWHvm2 HB Good                   | 73           | 21                          | 95                    | 25                             | 24                     | 0                                        | -24                  | Not Met                |
|            |                                  | CWHvm2 HB Med                    | 507          | 2,342                       | 2,849                 | 25                             | 712                    | 2,536                                    | 1,823                | Met NTHLB              |
|            |                                  | CWHvm2 HB Poor<br>CWHvm2 S Good  | 88<br>3      | 1,347<br>1                  | 1,435<br>3            | 25<br>59                       | 359<br>2               | 1,344<br>0                               | 985<br>-2            | Met NTHLB<br>Not Met   |
|            |                                  | MHmm1 Cw Poor                    | 134          | 1,188                       | 1,322                 | 28                             | 370                    | 1,225                                    | 855                  | Met NTHLB              |
|            |                                  | MHmm1 HB Med                     | 28           | 400                         | 428                   | 25                             | 107                    | 392                                      | 286                  | Met NTHLB              |
|            | Kilhalla/Churluuri               | MHmm1 HB Poor                    | 18           | 920                         | 938                   | 25                             | 235                    | 838                                      | 604                  | Met NTHLB              |
|            | Kilbella/Chuckwalla T<br>Kilippi | CWHms2 Fd Med                    | 6,185<br>7   | 18,099<br>0                 | 24,283<br>7           | 29<br>17                       | 6,347                  | 18,737<br>0                              | 12,390<br>-1         | Not Met                |
|            |                                  | CWHms2 Fd Poor                   | 13           | 0                           | 13                    | 17                             | 2                      | 0                                        | -2                   | Not Met                |
|            |                                  | CWHms2 HB Good                   | 9            | 13                          | 21                    | 23                             | 5                      | 0                                        | -5                   | Not Met                |
|            |                                  | CWHms2 HB Med                    | 508          | 264                         | 772                   | 23                             | 178<br>15              | 607                                      | 430                  | Met NTHLB              |
|            |                                  | CWHms2 S Good<br>CWHms2 S Med    | 3<br>26      | 23<br>4                     | 25<br>30              | 61<br>61                       | 15<br>19               | 8<br>30                                  | -8<br>12             | Not Met<br>Met THLB    |
|            |                                  | CWHws2 Fd Poor                   | 13           | 0                           | 13                    | 22                             | 3                      | 0                                        | -3                   | Not Met                |
|            |                                  | CWHws2 HB Good                   | 66           | 57                          | 123                   | 60                             | 74                     | 39                                       | -34                  | Not Met                |
| <u> </u>   |                                  | CWHws2 HB Med                    | 843          | 1,683                       | 2,526                 | 26                             | 657                    | 2,352                                    | 1,696                | Met NTHLB              |

| CWH-ws 2 S Med   MHmm2 HB Good 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 33 Met NTHLB 04 Met THLB 25 Met NTHLB 26 Met THLB 36 Not Met 37 Met THLB 38 Not Met 39 Met THLB 40 Not Met 40 Met THLB 41 Not Met 42 Not Met 53 Met NTHLB 44 Not Met 54 Not Met 55 Not Met 66 Met NTHLB 67 Not Met 68 Met NTHLB 68 Met NTHLB 69 Not Met                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHmm2 HB Good   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 Not Met 6 Met NTHLB 1 Met NTHLB 77 3 Met NTHLB 0 Met THLB 2 Met NTHLB 3 Not Met 3 Met THLB 4 Not Met 4 Met THLB 4 Not Met 5 Not Met 6 Not Met 7 Not Met 7 Not Met 8 Met NTHLB 9 Not Met 9 Not Met 9 Not Met 1 Not Met |
| MHmm2 HB Poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 Met NTHLB 17 33 Met NTHLB 04 Met THLB 18 Met THLB 19 Met THLB 30 Not Met 31 Met THLB 41 Not Met 41 Met THLB 42 Not Met 43 Met THLB 44 Not Met 45 Not Met 46 Not Met 47 Not Met 48 Not Met 48 Not Met 49 Not Met 40 Not Met 40 Not Met 41 Not Met 42 Not Met 43 Met THLB 44 Met NTHLB 45 Not Met 46 Met NTHLB 46 Met NTHLB 47 Not Met 48 Met NTHLB 48 Met NTHLB                                                                                                                 |
| Kilippi Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 33 Met NTHLB 04 Met THLB 25 Met NTHLB 26 Met THLB 36 Not Met 37 Met THLB 38 Not Met 39 Met THLB 40 Not Met 40 Met THLB 41 Not Met 42 Not Met 53 Met NTHLB 44 Not Met 54 Not Met 55 Not Met 66 Met NTHLB 67 Not Met 68 Met NTHLB 68 Met NTHLB 69 Not Met                                                                                                                                                                                                                         |
| King Island   CWHms2 Cw Med   154   254   408   38   155   378   2   CWHms2 Cw Poor   174   3114   489   44   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   215   21 | 0 Met THLB 2 Met NTHLB 3 Not Met 3 Met THLB 5 Not Met 4 Met THLB 4 Not Met 3 Met THLB 1 Not Met 3 Met NTHLB 1 Not Met 2 Not Met 3 Met NTHLB 4 Met NTHLB 4 Met NTHLB 5 Not Met 7 Not Met 8 Met NTHLB 8 Met NTHLB 9 Not Met                                                                                                                                                                                                                                                         |
| CWHms2 Fd Med CWHms2 HB Med CWHms2 HB Med CWHms2 HB Poor 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Met NTHLB 8 Met THLB 3 Not Met 3 Met THLB 5 Not Met 4 Met THLB 4 Not Met 3 Met NTHLB 1 Not Met 2 Not Met 3 Met NTHLB 4 Not Met 2 Not Met 3 Met THLB 4 Met THLB 9 Not Met                                                                                                                                                                                                                                                                                                        |
| CWHms2 HB Med   301   1,622   1,923   38   731   849   1   CWHms2 HB Poor   6   490   496   38   189   76   -1   CWHms2 HB Med   6   1   7   61   4   7   61   4   7   CWHwm1 CW Good   77   6   83   42   35   0   -2   CWHwm1 CW Med   427   890   1,317   47   619   733   6   CWHwm1 CW Poor   634   2,910   3,544   47   1,666   1,272   -3   CWHwm1 Fd Med   2   6   8   35   3   6   CWHwm1 Fd Med   2   6   8   35   3   6   CWHwm1 Fd Med   2   6   8   35   3   6   CWHwm1 HB Good   481   190   671   42   282   0   -2   CWHwm1 HB Med   2,184   2,602   4,785   42   2,010   2,013   CWHwm1 HB Poor   327   1,902   2,229   42   936   1,290   3   CWHwm1 S Good   78   14   92   42   39   0   -2   CWHwm1 S PoorPl   9   2   11   47   5   0   CWHwm2 W Med   75   151   32   47   106   141   CWHwm2 CW Poor   132   1,110   1,242   47   584   595   CWHwm2 Fd Poor   12   0   12   49   6   0   CWHwm2 HB Good   2   1,110   1,242   47   584   595   CWHwm2 HB Rood   118   67   185   42   687   827   1   CWHwm2 S Good   2   0   2   47   1   0   CWHwm2 S Good   2   0   2   47   1   0   CWHwm2 S Med   9   1   10   59   6   0   CWHwm2 S Med   9   1   10   59   6   0   CWHwm2 S Med   9   1   10   59   6   0   CWHwm3 S Med   20   3   23   35   42   148   150   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHwm3 CW Poor   2   0   2   47   1   0   CWHw3 CW Poor   2   0   2   47   1   0   CWHw3 CW Poor   2   0   2   47   1   0   CWHw3 CW Poor   2   0   2   47   1   0   CWHw3 CW Poor   2   0   2   47   1   0   0   The Math Milmm1 HB Med   3   0   3   3   65   2   0   0   The Milmm1 HB Med   4   4   4   4   4   4   4   4   4               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CWHms2 S Med   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 Met THLB 15 Not Met 4 Met THLB 4 Not Met 3 Met NTHLB 11 Not Met 12 Not Met 3 Met THLB 4 Met NTHLB 9 Not Met                                                                                                                                                                                                                                                                                                                                                                     |
| CWH-wn1 Cw Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Met Met THLB Mot Met Met NTHLB Mot Met Not Met Not Met Not Met Not Met Met THLB Met NTHLB Met NTHLB Not Met Not Met                                                                                                                                                                                                                                                                                                                                                           |
| CWHvm1 Cw Poor   634   2,910   3,544   47   1,666   1,272   -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 Not Met 3 Met NTHLB 1 Not Met 12 Not Met 3 Met THLB 4 Met NTHLB 9 Not Met                                                                                                                                                                                                                                                                                                                                                                                                       |
| CWHvm1 Fd Med   2   6   8   35   3   6   CWHvm1 Fd Poor   106   12   117   35   41   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 Met NTHLB 1 Not Met 2 Not Met 3 Met THLB 4 Met NTHLB 9 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CWHvm1 HB Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Met Met THLB Met NTHLB Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CWHvm1 HB Med   Cy184   Cy602   CWHvm1 HB Poor   CWHvm1 HB Poor   CWHvm1 HB Poor   CWHvm1 S Good   CWHvm1 S Med   CWHvm1 S Med   CWHvm1 S Med   CWHvm1 S PoorPl   Poor   CWHvm1 S PoorPl   Poor   CWHvm2 Cw Med   CWHvm2 Cw Poor   CWHvm2 Cw Poor   CWHvm2 Cw Poor   CWHvm2 Fd Poor   CWHvm2 HB Good   CWHvm3 Cw Med   CWHvm3 HB Good   CWHvm3 HB | 3 Met THLB<br>4 Met NTHLB<br>9 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CWHvm1 S Good   78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CWHvm1 S Med   70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CWHvm2 Cw Med   75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CWHvm2 Cw Poor   132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 Not Met<br>5 Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CWHvm2 HB Good   118   67   185   42   78   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Met THLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CWHvm2 HB Med   328   1,307   1,635   42   687   827   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 Not Met<br>8 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CWHvm2 S Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CWHvm2 S Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Met NTHLB<br>1 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CWHvm3 Cw Poor   CWHvm3 HB Med   101   410   511   42   215   414   1   MHmm1 Cw Med   3   0   3   65   2   0   MHmm1 HB Med   29   323   351   42   148   150   MHmm1 HB Poor   10   411   420   42   176   66   -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CWHvm3 HB Med   101   410   511   42   215   414   1   MHmm1 Cw Med   3   0   3   65   2   0   MHmm1 HB Med   29   323   351   42   148   150   MHmm1 HB Poor   10   411   420   42   176   66   -1     King Island Total   5,911   17,485   23,397   45   10,036   10,253   2   Kwatna/Quatlena   CWHvh2 Cw Good   1   0   1   63   1   0   CWHvh2 Cw Med   45   90   135   29   39   80   CWHvh2 Cw Poor   278   2,030   2,307   29   669   1,481   8   CWHvh2 HB Good   127   146   273   25   68   0   CWHvh2 HB Med   280   588   868   29   252   515   2   CWHvh2 HB Poor   8   278   287   29   83   131   3   4   4   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 Met THLB<br>1 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MHmm1 HB Med   29   323   351   42   148   150   MHmm1 HB Poor   10   411   420   42   176   66   -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MHmm1 HB Poor   10   411   420   42   176   66   -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Not Met<br>2 Met THLB                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Kwatna/Quatlena         CWHvh2 Cw Good<br>CWHvh2 Cw Med         1         0         1         63         1         0           CWHvh2 Cw Med<br>CWHvh2 Cw Poor<br>CWHvh2 HB Good         45         90         135         29         39         80           CWHvh2 Cw Poor<br>CWHvh2 HB Good         278         2,030         2,307         29         669         1,481         8           CWHvh2 HB Good<br>CWHvh2 HB Med         280         588         868         29         252         515         2           CWHvh2 HB Poor         8         278         287         29         83         131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CWHvh2 Cw Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CWHvh2 HB Good     127     146     273     25     68     0     -       CWHvh2 HB Med     280     588     868     29     252     515     2       CWHvh2 HB Poor     8     278     287     29     83     131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CWHvh2 HB Med         280         588         868         29         252         515         2           CWHvh2 HB Poor         8         278         287         29         83         131         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 Met NTHLB<br>8 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 Met NTHLB<br>2 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CWHvm1 Cw Poor   338   1,157   1,494   28   418   922   5     CWHvm1 Fd Med   2   0   2   21   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 Met NTHLB<br>0 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CWHvm1 HB Good 871 694 1,564 25 391 0 -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CWHvm1 HB Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 Met NTHLB<br>2 Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CWHvm1 S Good 335 396 731 25 183 0 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 Met NTHLB<br>8 Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CWHvm2 Cw Med 64 105 169 28 47 4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 Met NTHLB<br>1 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CWHvm2 HB Good 52 71 123 25 31 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CWHvm2 HB Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CWHvm2 S Good 6 0 6 59 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MHmm1 Cw Med   9   5   14   65   9   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 Not Met<br>6 Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MHmm1 HB Poor 6 860 866 25 216 540 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Kwatna/Quatlena Total         5,884         19,916         25,800         31         6,723         12,956         6,2           Lower Kimsquit         CWHms2 Cw Med         5         18         23         38         9         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CWHms2 Fd Med 201 83 284 29 82 25 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CWHms2 Fd Poor 24 253 276 29 80 44 - CWHms2 HB Good 417 312 729 38 277 0 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 Not Met<br>7 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CWHms2 HB Med   1,398   2,317   3,715   38   1,412   1,340   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 Not Met<br>7 Not Met<br>6 Not Met                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 Not Met<br>7 Not Met<br>6 Not Met<br>7 Not Met<br>7 Not Met<br>2 Not Met                                                                                                                                                                                                                                                                                                                                                                                                        |
| CWHms2 S Good   4   49   53   61   32   5   -<br>  CWHvm3 HB Med   5   1   6   42   3   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 Not Met 17 Not Met 18 Not Met 19 Not Met 19 Not Met 10 Not Met 10 Not Met 11 Met THLB                                                                                                                                                                                                                                                                                                                                                                                           |
| CWHws2 Fd Med   46   33   79   42   33   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 Not Met<br>7 Not Met<br>6 Not Met<br>7 Not Met<br>7 Not Met<br>2 Not Met                                                                                                                                                                                                                                                                                                                                                                                                        |
| CWHws2 Fd Poor   20   262   283   36   102   227   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 Not Met 17 Not Met 16 Not Met 2 Not Met 2 Not Met 11 Met THLB 17 Not Met                                                                                                                                                                                                                                                                                                                                                                                                        |

| MO<br>2009 | Landscape Unit            | Site Series<br>Surrogate                        | THLB<br>(ha)    | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition            |
|------------|---------------------------|-------------------------------------------------|-----------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|---------------------------------|
|            |                           | CWHws2 HB Med<br>CWHws2 HB Poor<br>CWHws2 S Med | 487<br>38<br>43 | 2,363<br>3,391<br>75        | 2,850<br>3,429<br>118 | 43<br>43<br>60                 | 1,226<br>1,474<br>71   | 1,895<br>1,097<br>0                      | 670<br>-377<br>-71   | Met NTHLB<br>Not Met<br>Not Met |
|            |                           | MHmm2 HB Med                                    | 4               | 293                         | 297                   | 42                             | 125                    | 197                                      | 72                   | Met NTHLB                       |
|            | Lower Kimsquit Total      |                                                 | 3,169           | 10,207                      | 13,377                | 43                             | 5,498                  | 5,218                                    | -280                 |                                 |
|            | Machmell                  | CWHms2 Cw Good                                  | 46              | 63                          | 109                   | 53                             | 58                     | 46                                       | -11                  | Not Met                         |
|            |                           | CWHms2 Cw Med<br>CWHms2 Cw Poor                 | 126<br>1        | 175<br>5                    | 301<br>6              | 23<br>26                       | 69<br>2                | 38<br>6                                  | -31<br>5             | Not Met<br>Met NTHLB            |
|            |                           | CWHms2 Fd Good                                  | 253             | 359                         | 612                   | 53                             | 325                    | 81                                       | -244                 | Not Met                         |
|            |                           | CWHms2 Fd Med                                   | 285             | 139                         | 424                   | 17                             | 72                     | 73                                       | 1                    | Met THLB                        |
|            |                           | CWHms2 Fd Poor<br>CWHms2 HB Good                | 62<br>382       | 97<br>218                   | 160<br>600            | 17<br>23                       | 27<br>138              | 1<br>76                                  | -26<br>-62           | Not Met<br>Not Met              |
|            |                           | CWHms2 HB Med                                   | 1,860           | 1,798                       | 3,658                 | 23                             | 841                    | 2,094                                    | 1,252                | Met NTHLB                       |
|            |                           | CWHms2 HB Poor                                  | 77              | 327                         | 404                   | 23                             | 93                     | 117                                      | 24                   | Met THLB                        |
|            |                           | CWHms2 S Good<br>CWHms2 S Med                   | 120<br>15       | 225<br>40                   | 345<br>55             | 61<br>61                       | 210<br>33              | 143<br>28                                | -68<br>-5            | Not Met<br>Not Met              |
|            |                           | CWHvm3 Cw Poor                                  | 88              | 149                         | 237                   | 28                             | 66                     | 230                                      | 164                  | Met NTHLB                       |
|            |                           | CWHvm3 Fd Good                                  | 29              | 1                           | 29                    | 21                             | 6                      | 0                                        | -6                   | Not Met                         |
|            |                           | CWHvm3 HB Med<br>CWHws2 Cw Med                  | 175<br>42       | 359<br>12                   | 534<br>54             | 25<br>50                       | 134<br>27              | 463<br>39                                | 329<br>12            | Met NTHLB<br>Met THLB           |
|            |                           | CWHws2 Fd Good                                  | 9               | 27                          | 37                    | 42                             | 15                     | 3                                        | -12                  | Not Met                         |
|            |                           | CWHws2 Fd Med                                   | 30              | 15                          | 45                    | 42                             | 19                     | 0                                        | -19                  | Not Met                         |
|            |                           | CWHws2 Fd Poor<br>CWHws2 HB Good                | 15<br>78        | 15<br>14                    | 30<br>92              | 22<br>60                       | 7<br>55                | 0<br>12                                  | -7<br>-43            | Not Met<br>Not Met              |
|            |                           | CWHws2 HB Good<br>CWHws2 HB Med                 | 879             | 2,761                       | 3,640                 | 26                             | 946                    | 2,870                                    | 1,924                | Met NTHLB                       |
|            |                           | CWHws2 HB Poor                                  | 136             | 1,006                       | 1,142                 | 26                             | 297                    | 1,039                                    | 742                  | Met NTHLB                       |
|            | Machmall Total            | MHmm2 HB Med                                    | 67<br>4,775     | 1,189<br>8,994              | 1,256                 | 25<br>34                       | 314<br>3,755           | 776                                      | 462<br>4,380         | Met NTHLB                       |
|            | Machmell Total<br>Nascall | CWHms2 Cw Med                                   | 4,775           | 208                         | 13,769<br>231         | 53                             | 122                    | 8,135<br>193                             | 4,380                | Met NTHLB                       |
|            | raccan                    | CWHms2 Cw Poor                                  | 25              | 786                         | 811                   | 61                             | 495                    | 235                                      | -260                 | Not Met                         |
|            |                           | CWHms2 HB Med                                   | 120             | 639                         | 758                   | 53                             | 402                    | 459                                      | 57                   | Met THLB                        |
|            |                           | CWHms2 HB Poor<br>CWHvm1 Cw Med                 | 3<br>11         | 718<br>625                  | 721<br>636            | 53<br>65                       | 382<br>413             | 241<br>441                               | -141<br>27           | Not Met<br>Met NTHLB            |
|            |                           | CWHvm1 HB Med                                   | 8               | 1,475                       | 1,483                 | 59                             | 875                    | 1,035                                    | 160                  | Met NTHLB                       |
|            | NI II T. I. I             | CWHvm3 Cw Med                                   | 2               | 5                           | 7                     | 65                             | 5                      | 7                                        | 3                    | Met NTHLB                       |
|            | Nascall Total<br>Neechanz | CWHms2 Cw Good                                  | 191<br>51       | 4,457<br>55                 | 4,648<br>106          | 58<br>53                       | 2,695<br>56            | 2,612<br>22                              | -83<br>-34           | Not Met                         |
|            | TTOCONANIE                | CWHms2 Cw Med                                   | 354             | 272                         | 626                   | 23                             | 144                    | 532                                      | 388                  | Met NTHLB                       |
|            |                           | CWHms2 Cw Poor                                  | 4               | 118                         | 121                   | 26                             | 32                     | 10                                       | -22                  | Not Met                         |
|            |                           | CWHms2 Fd Good<br>CWHms2 Fd Med                 | 165<br>348      | 21<br>204                   | 186<br>552            | 53<br>17                       | 98<br>94               | 9<br>52                                  | -89<br>-42           | Not Met<br>Not Met              |
|            |                           | CWHms2 Fd Poor                                  | 14              | 105                         | 119                   | 17                             | 20                     | 17                                       | -3                   | Not Met                         |
|            |                           | CWHms2 HB Good                                  | 116             | 278                         | 394                   | 23                             | 91                     | 111                                      | 21                   | Met THLB                        |
|            |                           | CWHms2 HB Med<br>CWHms2 HB Poor                 | 990<br>5        | 2,134<br>75                 | 3,124<br>80           | 23<br>23                       | 718<br>18              | 2,100<br>32                              | 1,381<br>14          | Met NTHLB<br>Met NTHLB          |
|            |                           | CWHvm1 Cw Med                                   | 5               | 10                          | 15                    | 28                             | 4                      | 15                                       | 11                   | Met NTHLB                       |
|            |                           | CWHvm2 HB Med                                   | 39              | 17                          | 56<br>704             | 25                             | 14                     | 38                                       | 24                   | Met THLB                        |
|            |                           | CWHvm3 Cw Med<br>CWHvm3 Cw Poor                 | 232<br>11       | 489<br>47                   | 721<br>58             | 28<br>28                       | 202<br>16              | 652<br>42                                | 450<br>26            | Met NTHLB<br>Met NTHLB          |
|            |                           | CWHvm3 Fd Good                                  | 40              | 5                           | 45                    | 21                             | 9                      | 0                                        | -9                   | Not Met                         |
|            |                           | CWHym3 Fd Med                                   | 147             | 37                          | 185                   | 21                             | 39                     | 0                                        | -39<br>27            | Not Met                         |
|            |                           | CWHvm3 Fd Poor<br>CWHvm3 HB Good                | 16<br>9         | 38<br>57                    | 54<br>67              | 21<br>25                       | 11<br>17               | 38<br>42                                 | 27<br>25             | Met NTHLB<br>Met NTHLB          |
|            |                           | CWHvm3 HB Med                                   | 1,203           | 4,000                       | 5,204                 | 25                             | 1,301                  | 4,156                                    | 2,855                | Met NTHLB                       |
|            |                           | CWHvm3 HB Poor<br>MHmm1 HB Med                  | 197<br>17       | 2,657<br>788                | 2,854<br>805          | 25<br>25                       | 713<br>201             | 2,483<br>675                             | 1,769<br>474         | Met NTHLB                       |
|            |                           | MHmm1 HB Poor                                   | 17<br>15        | 3,159                       | 3,174                 | 25<br>25                       | 793                    | 2,530                                    | 1,737                | Met NTHLB<br>Met NTHLB          |
|            | Neechanz Total            |                                                 | 3,978           | 14,568                      | 18,545                | 26                             | 4,594                  | 13,556                                   | 8,963                |                                 |
|            | Nootum/Koeye              | CMAunp Cw Poor                                  | 1               | 41                          | 43<br>104             | 26                             | 11                     | 43                                       | 32                   | Met NTHLB                       |
|            |                           | CWHvh2 Cw Good<br>CWHvh2 Cw Med                 | 86<br>840       | 18<br>432                   | 104<br>1,272          | 63<br>29                       | 65<br>369              | 0<br>662                                 | -65<br>293           | Not Met<br>Met THLB             |
|            |                           | CWHvh2 Cw Poor                                  | 1,341           | 4,977                       | 6,319                 | 29                             | 1,832                  | 6,111                                    | 4,278                | Met NTHLB                       |
|            |                           | CWHyh2 HP Cood                                  | 16              | 8                           | 24                    | 0                              | 0                      | 0                                        | 0                    | Met NTHLB                       |
|            |                           | CWHvh2 HB Good<br>CWHvh2 HB Med                 | 329<br>509      | 42<br>735                   | 371<br>1,243          | 25<br>29                       | 93<br>361              | 12<br>990                                | -81<br>630           | Not Met<br>Met NTHLB            |
|            |                           | CWHvh2 HB Poor                                  | 47              | 367                         | 414                   | 29                             | 120                    | 291                                      | 171                  | Met NTHLB                       |
|            |                           | CWHvh2 S Good                                   | 29              | 64                          | 93                    | 59<br>50                       | 55                     | 53                                       | -2                   | Not Met                         |
|            |                           | CWHvh2 S Med<br>CWHvh2 S PoorPl                 | 7<br>24         | 2<br>2                      | 8<br>26               | 59<br>29                       | 5<br>8                 | 5<br>26                                  | 0<br>18              | Not Met<br>Met THLB             |
|            |                           | CWHvm1 Cw Med                                   | 28              | 107                         | 135                   | 28                             | 38                     | 102                                      | 64                   | Met NTHLB                       |
|            |                           | CWHvm1 Cw Poor                                  | 33              | 111                         | 145                   | 28                             | 41                     | 145                                      | 104                  | Met NTHLB                       |
|            |                           | CWHvm2 Cw Med<br>CWHvm2 Cw Poor                 | 45<br>123       | 26<br>596                   | 70<br>718             | 28<br>28                       | 20<br>201              | 23<br>697                                | 3<br>496             | Met THLB<br>Met NTHLB           |
|            |                           | CWHVIII2 CW POOI<br>CWHVm2 Fd Poor              | 7               | 5                           | 12                    | 49                             | 6                      | 0                                        | -6                   | Not Met                         |
|            |                           | CWHvm2 HB Good                                  | 16              | 0                           | 16                    | 25                             | 4                      | 0                                        | -4                   | Not Met                         |
| 1          |                           | CWHvm2 HB Med                                   | 65              | 73                          | 138                   | 25                             | 34                     | 100                                      | 65                   | Met NTHLB                       |

| MO<br>2009 | Landscape Unit                 | Site Series<br>Surrogate         | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition   |
|------------|--------------------------------|----------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|------------------------|
|            |                                | CWHvm2 HB Poor                   | 14           | 38                          | 52                    | 25                             | 13                     | 8                                        | -6                   | Not Met                |
|            |                                | MHmm1 HB Med<br>MHwh1 Cw Med     | 4<br>1       | 7<br>0                      | 10<br>1               | 25<br>68                       | 3<br>1                 | 9<br>1                                   | 6<br>0               | Met NTHLB<br>Met THLB  |
|            |                                | MHwh1 Cw Poor                    | 27           | 323                         | 350                   | 29                             | 101                    | 344                                      | 243                  | Met NTHLB              |
|            |                                | MHwh1 HB Med                     | 10           | 15                          | 25                    | 68                             | 17                     | 25                                       | 8                    | Met THLB               |
|            | No. 1 W Talal                  | MHwh1 HB Poor                    | 3            | 108                         | 111                   | 29                             | 32                     | 98                                       | 66                   | Met NTHLB              |
|            | Nootum/Koeye Total Outer Coast | CWHvh2 Cw Poor                   | 3,604<br>166 | 8,095<br>6,208              | 11,699<br>6,374       | 35<br>97                       | 3,428<br>6,183         | 9,744<br>5,662                           | 6,315<br>-521        | Not Met                |
|            | Islands                        | 0 VV 1 VII 2 O V 1 O O I         | 100          | 0,200                       | 0,011                 | 01                             | 0,100                  | 0,002                                    | 021                  | THO THICK              |
|            |                                | CWHvh2 HB Med                    | 106          | 42                          | 148                   | 97                             | 143                    | 20                                       | -124                 | Not Met                |
|            | Outer Coast Islands 7 Owikeno  | Otal  CWHms2 Cw Med              | 273<br>16    | 6,249                       | 6,522<br>29           | 97<br>23                       | 6,326<br>7             | 5,682<br>18                              | -644<br>11           | Met THLB               |
|            | OWINGITO                       | CWHms2 Fd Good                   | 7            | 104                         | 111                   | 53                             | 59                     | 0                                        | -59                  | Not Met                |
|            |                                | CWHms2 Fd Med                    | 236          | 325                         | 561                   | 17                             | 95                     | 203                                      | 108                  | Met THLB               |
|            |                                | CWHms2 Fd Poor<br>CWHms2 HB Good | 1<br>113     | 352<br>409                  | 353<br>522            | 17<br>23                       | 60<br>120              | 13<br>0                                  | -47<br>-120          | Not Met<br>Not Met     |
|            |                                | CWHms2 HB Med                    | 527          | 1,077                       | 1,604                 | 23                             | 369                    | 999                                      | 630                  | Met NTHLB              |
|            |                                | CWHms2 HB Poor                   | 3            | 233                         | 236                   | 23                             | 54                     | 179                                      | 125                  | Met NTHLB              |
|            |                                | CWHvm1 Cw Med<br>CWHvm1 Cw Poor  | 33<br>110    | 366<br>636                  | 398<br>746            | 28<br>28                       | 112<br>209             | 303<br>679                               | 191<br>471           | Met NTHLB<br>Met NTHLB |
|            |                                | CWHvm1 Fd Med                    | 16           | 267                         | 283                   | 21                             | 60                     | 83                                       | 23                   | Met NTHLB              |
|            |                                | CWHvm1 HB Good                   | 7            | 285                         | 292                   | 25                             | 73                     | 83                                       | 10                   | Met NTHLB              |
|            |                                | CWHvm1 HB Med<br>CWHvm2 Cw Poor  | 32<br>15     | 2,859<br>872                | 2,890<br>887          | 25<br>28                       | 723<br>248             | 1,711<br>869                             | 989<br>621           | Met NTHLB<br>Met NTHLB |
|            |                                | CWHvm3 HB Med                    | 192          | 1,056                       | 1,249                 | 25                             | 312                    | 1,114                                    | 802                  | Met NTHLB              |
|            |                                | CWHvm3 HB Poor                   | 35           | 964                         | 999                   | 25                             | 250                    | 817                                      | 568                  | Met NTHLB              |
|            | Owikeno Total Price            | CWHvh2 Cw Poor                   | 1,344<br>98  | 9,815<br>5,109              | 11,159<br>5,207       | 26<br>68                       | 2,750<br>3,541         | 7,071<br>1,912                           | 4,321<br>-1,629      | Not Met                |
|            | Price Total                    | CWHVIIZ CW POOI                  | 98           | 5,109                       | 5,207                 | 68                             | 3,541                  | 1,912                                    | -1,629               | Not wet                |
|            | Roderick                       | CWHvh2 Cw Med                    | 262          | 251                         | 513                   | 29                             | 149                    | 497                                      | 348                  | Met NTHLB              |
|            | Date del Total                 | CWHvh2 HB Med                    | 195          | 138                         | 333                   | 29                             | 97                     | 160                                      | 63                   | Met THLB               |
|            | Roderick Total Roscoe          | CWHvh2 Cw Med                    | 457<br>690   | 389<br>1,587                | 846<br>2,276          | 29<br>49                       | 245<br>1,115           | 656<br>1,825                             | 411<br>709           | Met NTHLB              |
|            | 1103000                        | CWHvh2 Cw Poor                   | 353          | 4,612                       | 4,964                 | 49                             | 2,433                  | 3,197                                    | 765                  | Met NTHLB              |
|            |                                | CWHvh2 HB Med                    | 514          | 1,846                       | 2,360                 | 49                             | 1,156                  | 1,826                                    | 670                  | Met NTHLB              |
|            |                                | CWHvh2 HB Poor<br>CWHvh2 S Med   | 40<br>5      | 1,503<br>101                | 1,543<br>107          | 49<br>59                       | 756<br>63              | 559<br>105                               | -197<br>42           | Not Met<br>Met NTHLB   |
|            |                                | CWHvm1 Cw Med                    | 108          | 1,161                       | 1,269                 | 47                             | 597                    | 805                                      | 208                  | Met NTHLB              |
|            |                                | CWHvm1 Cw Poor                   | 124          | 1,716                       | 1,840                 | 47                             | 865                    | 1,023                                    | 158                  | Met NTHLB              |
|            |                                | CWHvm1 HB Med<br>CWHvm1 HB Poor  | 223<br>117   | 2,454<br>1,883              | 2,677<br>2,001        | 42<br>42                       | 1,124<br>840           | 2,054<br>1,396                           | 930<br>556           | Met NTHLB<br>Met NTHLB |
|            |                                | CWHvm2 Cw Med                    | 8            | 82                          | 89                    | 47                             | 42                     | 68                                       | 26                   | Met NTHLB              |
|            |                                | CWHvm2 HB Med                    | 25           | 240                         | 265                   | 42                             | 111                    | 231                                      | 120                  | Met NTHLB              |
|            | Roscoe Total                   | CWHvm2 HB Poor                   | 2,243        | 801<br>17,985               | 837<br>20,229         | 42<br>47                       | 352<br>9,454           | 435<br>13,524                            | 4,070                | Met NTHLB              |
|            | Sheemahant                     | CWHms2 Cw Good                   | 33           | 76                          | 109                   | 53                             | 58                     | 15                                       | -42                  | Not Met                |
|            |                                | CWHms2 Cw Med                    | 419          | 277                         | 696                   | 23                             | 160                    | 211                                      | 51                   | Met THLB               |
|            |                                | CWHms2 Cw Poor<br>CWHms2 Fd Good | 29<br>269    | 85<br>213                   | 114<br>482            | 26<br>53                       | 30<br>255              | 81<br>40                                 | 52<br>-216           | Met NTHLB<br>Not Met   |
|            |                                | CWHms2 Fd Med                    | 570          | 312                         | 882                   | 17                             | 150                    | 228                                      | 79                   | Met THLB               |
|            |                                | CWHms2 Fd Poor                   | 73           | 657                         | 729                   | 17                             | 124                    | 194                                      | 70                   | Met NTHLB              |
|            |                                | CWHms2 HB Good<br>CWHms2 HB Med  | 284<br>1,847 | 208<br>1,167                | 493<br>3,015          | 23<br>23                       | 113<br>693             | 0<br>1,255                               | -113<br>562          | Not Met<br>Met THLB    |
|            |                                | CWHms2 HB Poor                   | 39           | 371                         | 410                   | 23                             | 94                     | 353                                      | 259                  | Met NTHLB              |
|            |                                | CWHms2 S Good<br>CWHms2 S Med    | 40<br>34     | 381<br>67                   | 421<br>101            | 61<br>61                       | 257<br>61              | 291<br>23                                | 34<br>-38            | Met NTHLB<br>Not Met   |
|            |                                | CWHins2 S Med<br>CWHvm3 Cw Med   | 4            | 0                           | 101<br>4              | 28                             | 1                      | 0                                        | -36<br>-1            | Not Met                |
|            |                                | CWHvm3 Fd Med                    | 25           | 5                           | 31                    | 21                             | 6                      | 25                                       | 19                   | Met THLB               |
|            |                                | CWHvm3 HB Good<br>CWHvm3 HB Med  | 65<br>141    | 5<br>188                    | 70<br>329             | 25<br>25                       | 18<br>82               | 0<br>238                                 | -18<br>156           | Not Met<br>Met NTHLB   |
|            |                                | CWHvm3 HB Poor                   | 18           | 265                         | 283                   | 25<br>25                       | 71                     | 265                                      | 194                  | Met NTHLB              |
|            |                                | CWHws2 Cw Med                    | 17           | 7                           | 24                    | 50                             | 12                     | 19                                       | 6                    | Met THLB               |
|            |                                | CWHws2 Fd Med<br>CWHws2 Fd Poor  | 111<br>4     | 164<br>137                  | 275<br>141            | 42<br>22                       | 115<br>31              | 32<br>26                                 | -83<br>-5            | Not Met<br>Not Met     |
|            |                                | CWHws2 HB Good                   | 96           | 24                          | 119                   | 60                             | 72                     | 0                                        | -72                  | Not Met                |
|            |                                | CWHws2 HB Med                    | 754          | 1,577                       | 2,331                 | 26                             | 606                    | 1,768                                    | 1,162                | Met NTHLB              |
|            |                                | CWHws2 HB Poor<br>MHmm1 HB Good  | 241<br>14    | 2,001<br>1                  | 2,242<br>15           | 26<br>59                       | 583<br>9               | 2,090<br>0                               | 1,507<br>-9          | Met NTHLB<br>Not Met   |
|            |                                | MHmm1 HB Med                     | 3            | 31                          | 34                    | 25                             | 9                      | 34                                       | 26                   | Met NTHLB              |
|            |                                | MHmm2 HB Med                     | 103          | 592                         | 695                   | 25                             | 174                    | 686                                      | 512                  | Met NTHLB              |
|            | Sheemahant Total               | MHmm2 HB Poor                    | 17<br>5,248  | 3,064<br>11,877             | 3,081<br>17,125       | 49<br>34                       | 1,510<br>5,294         | 2,900<br>10,775                          | 1,391<br>5,481       | Met NTHLB              |
|            | Sheep Passage                  | CMAunp Cw Poor                   | 1            | 2                           | 4                     | 26                             | 5,294                  | 4                                        | 3,461                | Met NTHLB              |
|            |                                | CWHvm1 Cw Med                    | 298          | 1,210                       | 1,508                 | 28                             | 422                    | 897                                      | 475                  | Met NTHLB              |
| 1          |                                | CWHvm1 Cw Poor                   | 1,260        | 5,508                       | 6,768                 | 28                             | 1,895                  | 6,045                                    | 4,150                | Met NTHLB              |

| MO<br>2009 | Landscape Unit                   | Site Series<br>Surrogate         | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition   |
|------------|----------------------------------|----------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|------------------------|
|            |                                  | CWHvm1 HB Med                    | 427          | 3,802                       | 4,229                 | 25                             | 1,057                  | 2,814                                    | 1,757                | Met NTHLB              |
|            |                                  | CWHvm1 HB Poor<br>CWHvm1 S Med   | 8<br>77      | 2,694<br>513                | 2,702<br>590          | 25<br>25                       | 676<br>147             | 2,235<br>438                             | 1,560<br>291         | Met NTHLB<br>Met NTHLB |
|            |                                  | CWHvm2 Cw Med                    | 1            | 143                         | 144                   | 28                             | 40                     | 53                                       | 12                   | Met NTHLB              |
|            |                                  | CWHvm2 Cw Poor                   | 101          | 721                         | 822                   | 28                             | 230                    | 815                                      | 585                  | Met NTHLB              |
|            |                                  | CWHvm2 HB Med<br>CWHvm2 S Med    | 33<br>3      | 470<br>41                   | 503<br>44             | 25<br>59                       | 126<br>26              | 365<br>44                                | 239<br>18            | Met NTHLB<br>Met NTHLB |
|            | Sheep Passage Total              |                                  | 2,211        | 15,103                      | 17,313                | 30                             | 4,620                  | 13,710                                   | 9,089                |                        |
|            | Sumquolt                         | CWHms2 Cw Med<br>CWHms2 Cw Poor  | 65<br>9      | 8                           | 73<br>12              | 38<br>44                       | 28<br>5                | 73<br>0                                  | 45<br>-5             | Met THLB<br>Not Met    |
|            |                                  | CWHms2 Fd Med                    | 38           | 40                          | 77                    | 29                             | 22                     | 0                                        | -22                  | Not Met                |
|            |                                  | CWHms2 HB Good                   | 111          | 70                          | 181                   | 38                             | 69                     | 0                                        | -69                  | Not Met                |
|            |                                  | CWHms2 HB Med<br>CWHms2 S Good   | 350<br>4     | 961<br>71                   | 1,310<br>76           | 38<br>61                       | 498<br>46              | 598<br>35                                | 100<br>-11           | Met THLB<br>Not Met    |
|            |                                  | CWHws2 Cw Med                    | 51           | 21                          | 72                    | 50                             | 36                     | 72                                       | 36                   | Met THLB               |
|            |                                  | CWHws2 HB Good                   | 65           | 24                          | 88                    | 60                             | 53                     | 0                                        | -53                  | Not Met                |
|            |                                  | CWHws2 HB Med<br>CWHws2 HB Poor  | 430<br>3     | 2,436<br>2,069              | 2,866<br>2,073        | 43<br>43                       | 1,232<br>891           | 1,692<br>1,029                           | 460<br>138           | Met NTHLB<br>Met NTHLB |
|            |                                  | MHmm2 HB Med                     | 16           | 393                         | 409                   | 42                             | 172                    | 274                                      | 102                  | Met NTHLB              |
|            | Sumquolt Total                   | O/M// Jane 20 Oct. On and        | 1,142        | 6,095                       | 7,237                 | 44                             | 3,053                  | 3,773                                    | 720                  | Net Met                |
|            | Sutslem/Skowquiltz               | CWHms2 Cw Good<br>CWHms2 Cw Med  | 16<br>6      | 0<br>509                    | 16<br>515             | 53<br>38                       | 8<br>196               | 0<br>435                                 | -8<br>239            | Not Met<br>Met NTHLB   |
|            |                                  | CWHms2 Cw Poor                   | 50           | 508                         | 558                   | 44                             | 246                    | 371                                      | 125                  | Met NTHLB              |
|            |                                  | CWHms2 Fd Good                   | 17<br>15     | 0                           | 17                    | 53                             | 9                      | 0                                        | -9<br>10             | Not Met                |
|            |                                  | CWHms2 Fd Poor<br>CWHms2 HB Good | 15<br>17     | 878<br>152                  | 893<br>169            | 29<br>38                       | 259<br>64              | 247<br>0                                 | -12<br>-64           | Not Met<br>Not Met     |
|            |                                  | CWHms2 HB Med                    | 68           | 3,952                       | 4,020                 | 38                             | 1,528                  | 2,056                                    | 529                  | Met NTHLB              |
|            |                                  | CWHms2 HB Poor<br>CWHms2 S Med   | 4<br>20      | 1,273<br>53                 | 1,278<br>73           | 38<br>61                       | 486<br>45              | 837<br>55                                | 351<br>10            | Met NTHLB<br>Met THLB  |
|            |                                  | CWHIIISZ 3 Med<br>CWHvm3 Cw Poor | 20           | 470                         | 472                   | 47                             | 222                    | 383                                      | 161                  | Met NTHLB              |
|            |                                  | CWHvm3 Fd Poor                   | 49           | 160                         | 209                   | 35                             | 73                     | 39                                       | -34                  | Not Met                |
|            | Sutslem/Skowquiltz T<br>Swindle  | otal<br>CMAunp HB Med            | 265<br>3     | 7,955<br>0                  | 8,220                 | 43<br>59                       | 3,135<br>2             | 4,422<br>0                               | 1,287<br>-2          | Not Met                |
|            | Swiridle                         | CWHvh2 Cw Med                    | 702          | 441                         | 1,144                 | 68                             | 778                    | 148                                      | -629                 | Not Met                |
|            |                                  | CWHvh2 Cw Poor                   | 1,264        | 7,530                       | 8,794                 | 68                             | 5,980                  | 5,137                                    | -842                 | Not Met                |
|            |                                  | CWHvh2 HB Med<br>CWHvh2 HB Poor  | 481<br>17    | 761<br>1,859                | 1,243<br>1,876        | 68<br>68                       | 845<br>1,276           | 537<br>1,575                             | -308<br>299          | Not Met<br>Met NTHLB   |
|            |                                  | CWHvm1 Cw Poor                   | 209          | 981                         | 1,190                 | 65                             | 773                    | 767                                      | -6                   | Not Met                |
|            | Swindle Total                    | OMI have Over Over d             | 2,676        | 11,573                      | 14,249                | 66                             | 9,653                  | 8,165                                    | -1,488               | Niat Mat               |
|            | Upper Kimsquit                   | CWHws2 Cw Good<br>CWHws2 Cw Med  | 22<br>10     | 8<br>25                     | 30<br>34              | 50<br>50                       | 15<br>17               | 0                                        | -15<br>-17           | Not Met<br>Not Met     |
|            |                                  | CWHws2 Fd Poor                   | 8            | 35                          | 43                    | 36                             | 16                     | 43                                       | 28                   | Met NTHLB              |
|            |                                  | CWHws2 HB Good<br>CWHws2 HB Med  | 531<br>1,485 | 250<br>3,970                | 781<br>5,456          | 60<br>43                       | 469<br>2,346           | 101<br>3,725                             | -368<br>1,379        | Not Met<br>Met NTHLB   |
|            |                                  | CWHws2 HB Poor                   | 235          | 3,519                       | 3,754                 | 43                             | 1,614                  | 1,652                                    | 38                   | Met THLB               |
|            |                                  | CWHws2 S Good                    | 21           | 120                         | 141                   | 60                             | 85                     | 43                                       | -41                  | Not Met                |
|            |                                  | CWHws2 S Med<br>MHmm2 HB Good    | 69<br>7      | 197<br>0                    | 266<br>7              | 60<br>42                       | 160<br>3               | 61<br>0                                  | -98<br>-3            | Not Met<br>Not Met     |
|            |                                  | MHmm2 HB Med                     | 43           | 359                         | 402                   | 42                             | 169                    | 338                                      | 170                  | Met NTHLB              |
|            | Unner Kimeguit Tetal             | MHmm2 HB Poor                    | 1            | 2,956                       | 2,957                 | 49                             | 1,449                  | 1,063                                    | -386                 | Not Met                |
|            | Upper Kimsquit Total<br>Washwash | CWHms2 Cw Med                    | 2,433        | 11,438<br>278               | 13,872<br>279         | 49<br>53                       | 6,341<br>148           | 7,028<br>50                              | -98                  | Not Met                |
|            |                                  | CWHms2 Fd Good                   | 47           | 69                          | 116                   | 53                             | 61                     | 57                                       | -4                   | Not Met                |
|            |                                  | CWHms2 Fd Med<br>CWHms2 HB Good  | 44<br>94     | 347<br>401                  | 391<br>495            | 41<br>53                       | 160<br>262             | 168<br>11                                | 8<br>-251            | Met NTHLB<br>Not Met   |
|            |                                  | CWHms2 HB Med                    | 88           | 2,634                       | 2,722                 | 53                             | 1,443                  | 1,386                                    | -56                  | Not Met                |
|            |                                  | CWHvm3 Cw Med                    | 24           | 9                           | 33                    | 65                             | 22                     | 7                                        | -15                  | Not Met                |
|            |                                  | CWHvm3 Cw Poor<br>CWHvm3 Fd Med  | 17<br>65     | 145<br>24                   | 162<br>88             | 65<br>49                       | 105<br>43              | 159<br>18                                | 54<br>-25            | Met NTHLB<br>Not Met   |
|            |                                  | CWHvm3 HB Good                   | 30           | 20                          | 51                    | 59                             | 30                     | 0                                        | -30                  | Not Met                |
|            |                                  | CWHym3 HB Roor                   | 134          | 2,268                       | 2,402                 | 59<br>50                       | 1,417                  | 1,760                                    | 343                  | Met NTHLB              |
|            |                                  | CWHvm3 HB Poor<br>MHmm1 HB Med   | 1<br>47      | 2,136<br>317                | 2,138<br>364          | 59<br>59                       | 1,261<br>215           | 1,769<br>271                             | 508<br>57            | Met NTHLB<br>Met NTHLB |
|            | \A(1                             | MHmm1 HB Poor                    | 14           | 2,383                       | 2,397                 | 59                             | 1,414                  | 2,057                                    | 643                  | Met NTHLB              |
|            | Washwash Total<br>Yeo            | CWHvh2 Cw Med                    | 607<br>92    | 11,031<br>565               | 11,638<br>657         | 56<br>29                       | 6,582<br>191           | 7,715<br>486                             | 1,133<br>295         | Met NTHLB              |
|            | . 50                             | CWHvh2 Cw Poor                   | 584          | 4,151                       | 4,735                 | 29                             | 1,373                  | 3,439                                    | 2,066                | Met NTHLB              |
|            |                                  | CWHyh2 HB Good                   | 25           | 2 000                       | 27                    | 25                             | 7                      | 0                                        | -7<br>1 524          | Not Met                |
|            |                                  | CWHvh2 HB Med<br>CWHvh2 HB Poor  | 630<br>16    | 2,090<br>900                | 2,720<br>916          | 29<br>29                       | 789<br>266             | 2,313<br>671                             | 1,524<br>406         | Met NTHLB<br>Met NTHLB |
|            | Yeo Total                        | .=                               | 1,347        | 7,708                       | 9,054                 | 28                             | 2,625                  | 6,909                                    | 4,284                |                        |
| SCC        | otal<br>Allison                  | CWHvh1 Cw Poor                   | 99,231<br>37 | 390,878<br>27               | 490,108<br>64         | 38<br>29                       | 190,144<br>19          | 323,587<br>64                            | 133,442<br>46        | Met NTHLB              |
| 300        | Allison Total                    | GVVIIVIII GW POOI                | 37           | 27                          | 64                    | 29                             | 19                     | 64                                       | 46                   | INICT IN I LITE        |
| 1          | Bella Coola                      | CWHds2 Cw Good                   | 24           | 7                           | 31                    |                                | 7                      | 0                                        | -7                   | Not Met                |

| MO<br>2009 | Landscape Unit             | Site Series<br>Surrogate                                                                                                                                                                                                                                       | THLB<br>(ha)                                                                                                | PFLB<br>non<br>THLB<br>(ha)                                                                                                       | Total<br>PFLB<br>(ha)                                                                                                                 | Old<br>Growth<br>Target<br>(%)                                                                                 | Target<br>Area<br>(ha)                                                                                                        | Current<br>Old<br>Growth<br>Area<br>(ha)                                                                                     | Surplus<br>/ Deficit                                                                                                      | Current<br>Condition                                                                                                                                                                   |
|------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                            | CWHds2 Cw Med<br>CWHds2 Cw Poor                                                                                                                                                                                                                                | 214<br>62                                                                                                   | 166<br>38                                                                                                                         | 380<br>100                                                                                                                            | 22<br>60                                                                                                       | 83<br>60                                                                                                                      | 106<br>33                                                                                                                    | 23<br>-27                                                                                                                 | Met THLB<br>Not Met                                                                                                                                                                    |
|            |                            | CWHds2 Fd Good<br>CWHds2 Fd Med                                                                                                                                                                                                                                | 45<br>62                                                                                                    | 68<br>176                                                                                                                         | 113<br>238                                                                                                                            | 42<br>18                                                                                                       | 47<br>43                                                                                                                      | 0<br>45                                                                                                                      | -47<br>2                                                                                                                  | Not Met<br>Met THLB                                                                                                                                                                    |
|            |                            | CWHds2 Fd Poor                                                                                                                                                                                                                                                 | 43                                                                                                          | 399                                                                                                                               | 442                                                                                                                                   | 22                                                                                                             | 97                                                                                                                            | 55                                                                                                                           | -42                                                                                                                       | Not Met                                                                                                                                                                                |
|            |                            | CWHds2 HB Good                                                                                                                                                                                                                                                 | 66                                                                                                          | 58                                                                                                                                | 124                                                                                                                                   | 60                                                                                                             | 75<br>227                                                                                                                     | 0                                                                                                                            | -75                                                                                                                       | Not Met                                                                                                                                                                                |
|            |                            | CWHds2 HB Med<br>CWHds2 S Med                                                                                                                                                                                                                                  | 149<br>19                                                                                                   | 724<br>9                                                                                                                          | 873<br>28                                                                                                                             | 26<br>60                                                                                                       | 227<br>17                                                                                                                     | 114<br>1                                                                                                                     | -113<br>-16                                                                                                               | Not Met<br>Not Met                                                                                                                                                                     |
|            |                            | CWHds2 S PoorPl                                                                                                                                                                                                                                                | 5                                                                                                           | 164                                                                                                                               | 170                                                                                                                                   | 12                                                                                                             | 20                                                                                                                            | 2                                                                                                                            | -18                                                                                                                       | Not Met                                                                                                                                                                                |
|            |                            | CWHms2 Cw Med<br>CWHms2 HB Med                                                                                                                                                                                                                                 | 50<br>23                                                                                                    | 21<br>139                                                                                                                         | 71<br>162                                                                                                                             | 53<br>23                                                                                                       | 38<br>37                                                                                                                      | 0<br>30                                                                                                                      | -38<br>-7                                                                                                                 | Not Met<br>Not Met                                                                                                                                                                     |
|            |                            | CWHws2 Cw Med                                                                                                                                                                                                                                                  | 14                                                                                                          | 0                                                                                                                                 | 14                                                                                                                                    | 50                                                                                                             | 7                                                                                                                             | 0                                                                                                                            | -7                                                                                                                        | Not Met                                                                                                                                                                                |
|            |                            | CWHws2 Cw Poor<br>CWHws2 Fd Med                                                                                                                                                                                                                                | 23<br>4                                                                                                     | 24<br>27                                                                                                                          | 47<br>31                                                                                                                              | 60<br>18                                                                                                       | 28<br>6                                                                                                                       | 0<br>1                                                                                                                       | -28<br>-5                                                                                                                 | Not Met<br>Not Met                                                                                                                                                                     |
|            |                            | CWHws2 Fd Nied<br>CWHws2 Fd Poor                                                                                                                                                                                                                               | 12                                                                                                          | 46                                                                                                                                | 58                                                                                                                                    | 22                                                                                                             | 13                                                                                                                            | 0                                                                                                                            | -13                                                                                                                       | Not Met                                                                                                                                                                                |
|            |                            | CWHws2 HB Med                                                                                                                                                                                                                                                  | 5                                                                                                           | 229                                                                                                                               | 234                                                                                                                                   | 26                                                                                                             | 61                                                                                                                            | 43                                                                                                                           | -18                                                                                                                       | Not Met                                                                                                                                                                                |
|            |                            | MHmm2 Fd Med<br>MHmm2 Fd Poor                                                                                                                                                                                                                                  | 4<br>11                                                                                                     | 0<br>1                                                                                                                            | 4<br>13                                                                                                                               | 49<br>49                                                                                                       | 2<br>6                                                                                                                        | 0<br>0                                                                                                                       | -2<br>-6                                                                                                                  | Not Met<br>Not Met                                                                                                                                                                     |
|            | Bella Coola Total          |                                                                                                                                                                                                                                                                | 836                                                                                                         | 2,297                                                                                                                             | 3,133                                                                                                                                 | 37                                                                                                             | 875                                                                                                                           | 431                                                                                                                          | -444                                                                                                                      | N                                                                                                                                                                                      |
|            | Clayton                    | CWHms2 Cw Med<br>CWHms2 Fd Good                                                                                                                                                                                                                                | 31<br>17                                                                                                    | 67<br>4                                                                                                                           | 98<br>21                                                                                                                              | 53<br>22                                                                                                       | 52<br>5                                                                                                                       | 31<br>8                                                                                                                      | -21<br>3                                                                                                                  | Not Met<br>Met THLB                                                                                                                                                                    |
|            |                            | CWHms2 Fd Med                                                                                                                                                                                                                                                  | 183                                                                                                         | 52                                                                                                                                | 235                                                                                                                                   | 17                                                                                                             | 40                                                                                                                            | 73                                                                                                                           | 33                                                                                                                        | Met THLB                                                                                                                                                                               |
|            |                            | CWHms2 Fd Poor<br>CWHms2 HB Good                                                                                                                                                                                                                               | 257<br>27                                                                                                   | 397<br>5                                                                                                                          | 654<br>33                                                                                                                             | 17<br>23                                                                                                       | 111<br>8                                                                                                                      | 88<br>0                                                                                                                      | -23<br>-8                                                                                                                 | Not Met<br>Not Met                                                                                                                                                                     |
|            |                            | CWHms2 HB Med                                                                                                                                                                                                                                                  | 2                                                                                                           | 75                                                                                                                                | 78                                                                                                                                    | 23                                                                                                             | 18                                                                                                                            | 56                                                                                                                           | 38                                                                                                                        | Met NTHLB                                                                                                                                                                              |
|            |                            | CWHws2 Cw Med<br>CWHws2 Fd Good                                                                                                                                                                                                                                | 8<br>1                                                                                                      | 0                                                                                                                                 | 8<br>1                                                                                                                                | 50<br>18                                                                                                       | 4<br>0                                                                                                                        | 0<br>1                                                                                                                       | -4<br>1                                                                                                                   | Not Met<br>Met THLB                                                                                                                                                                    |
|            |                            | CWHws2 Fd Med                                                                                                                                                                                                                                                  | 7                                                                                                           | 6                                                                                                                                 | 13                                                                                                                                    | 18                                                                                                             | 2                                                                                                                             | 12                                                                                                                           | 10                                                                                                                        | Met NTHLB                                                                                                                                                                              |
|            |                            | CWHws2 Fd Poor                                                                                                                                                                                                                                                 | 24                                                                                                          | 209                                                                                                                               | 233                                                                                                                                   | 22                                                                                                             | 51                                                                                                                            | 10                                                                                                                           | -41                                                                                                                       | Not Met                                                                                                                                                                                |
|            |                            | CWHws2 HB Good<br>CWHws2 HB Med                                                                                                                                                                                                                                | 14<br>245                                                                                                   | 19<br>241                                                                                                                         | 34<br>486                                                                                                                             | 26<br>26                                                                                                       | 9<br>126                                                                                                                      | 0<br>313                                                                                                                     | -9<br>187                                                                                                                 | Not Met<br>Met NTHLB                                                                                                                                                                   |
|            |                            | CWHws2 HB Poor                                                                                                                                                                                                                                                 | 20                                                                                                          | 178                                                                                                                               | 198                                                                                                                                   | 26                                                                                                             | 52                                                                                                                            | 4                                                                                                                            | -48                                                                                                                       | Not Met                                                                                                                                                                                |
|            |                            | MHmm2 Cw Med<br>MHmm2 Fd Poor                                                                                                                                                                                                                                  | 4 3                                                                                                         | 0<br>21                                                                                                                           | 4<br>24                                                                                                                               | 65<br>49                                                                                                       | 2<br>12                                                                                                                       | 0                                                                                                                            | -2<br>-11                                                                                                                 | Not Met<br>Not Met                                                                                                                                                                     |
|            |                            | MHmm2 HB Med                                                                                                                                                                                                                                                   | 57                                                                                                          | 264                                                                                                                               | 321                                                                                                                                   | 59                                                                                                             | 189                                                                                                                           | 104                                                                                                                          | -85                                                                                                                       | Not Met                                                                                                                                                                                |
|            | Clayton Total              | MHmm2 HB Poor                                                                                                                                                                                                                                                  | 7<br>909                                                                                                    | 639<br>2,178                                                                                                                      | 646<br>3,087                                                                                                                          | 25<br>32                                                                                                       | 161<br>843                                                                                                                    | 14<br>715                                                                                                                    | -147<br>-128                                                                                                              | Not Met                                                                                                                                                                                |
|            | Draney                     | CWHvh2 Cw Good                                                                                                                                                                                                                                                 | 492                                                                                                         | 22                                                                                                                                | 514                                                                                                                                   | 63                                                                                                             | 324                                                                                                                           | 0                                                                                                                            | -324                                                                                                                      | Not Met                                                                                                                                                                                |
|            |                            | CWHvh2 Cw Med<br>CWHvh2 Cw Poor                                                                                                                                                                                                                                | 2,998<br>5,521                                                                                              | 1,153<br>13,710                                                                                                                   | 4,151<br>19,231                                                                                                                       | 29<br>29                                                                                                       | 1,204<br>5,577                                                                                                                | 2,452<br>18,089                                                                                                              | 1,249<br>12,512                                                                                                           | Met THLB<br>Met NTHLB                                                                                                                                                                  |
|            |                            | CWHvh2 HB Good                                                                                                                                                                                                                                                 | 342                                                                                                         | 331                                                                                                                               | 673                                                                                                                                   | 29<br>25                                                                                                       | 168                                                                                                                           | 0                                                                                                                            | -168                                                                                                                      | Not Met                                                                                                                                                                                |
|            |                            | CWHvh2 HB Med                                                                                                                                                                                                                                                  | 1,493                                                                                                       | 1,275<br>44                                                                                                                       | 2,768<br>45                                                                                                                           | 29<br>29                                                                                                       | 803                                                                                                                           | 464<br>20                                                                                                                    | -339<br>7                                                                                                                 | Not Met                                                                                                                                                                                |
|            |                            | CWHvh2 HB Poor<br>CWHvh2 S Good                                                                                                                                                                                                                                | 1<br>20                                                                                                     | 5                                                                                                                                 | 26                                                                                                                                    | 29<br>25                                                                                                       | 13<br>6                                                                                                                       | 16                                                                                                                           | 9                                                                                                                         | Met NTHLB<br>Met THLB                                                                                                                                                                  |
|            |                            | CWHvh2 S Med                                                                                                                                                                                                                                                   | 50                                                                                                          | 15                                                                                                                                | 65                                                                                                                                    | 59                                                                                                             | 38                                                                                                                            | 2                                                                                                                            | -36                                                                                                                       | Not Met                                                                                                                                                                                |
|            |                            | CWHvh2 S PoorPl<br>CWHvm1 Cw Good                                                                                                                                                                                                                              | 2<br>15                                                                                                     | 0                                                                                                                                 | 2<br>15                                                                                                                               | 12<br>25                                                                                                       | 0<br>4                                                                                                                        | 2<br>0                                                                                                                       | 2<br>-4                                                                                                                   | Met THLB<br>Not Met                                                                                                                                                                    |
|            |                            | CWHvm1 Cw Med                                                                                                                                                                                                                                                  | 304                                                                                                         | 502                                                                                                                               | 806                                                                                                                                   | 28                                                                                                             | 226                                                                                                                           | 643                                                                                                                          | 418                                                                                                                       | Met NTHLB                                                                                                                                                                              |
|            |                            | CWHvm1 Cw Poor<br>CWHvm1 HB Med                                                                                                                                                                                                                                | 908<br>134                                                                                                  | 812<br>286                                                                                                                        | 1,720<br>419                                                                                                                          | 28<br>25                                                                                                       | 482<br>105                                                                                                                    | 1,603<br>57                                                                                                                  | 1,122<br>-48                                                                                                              | Met NTHLB<br>Not Met                                                                                                                                                                   |
|            |                            | CWHvm2 Cw Good                                                                                                                                                                                                                                                 | 24                                                                                                          | 0                                                                                                                                 | 24                                                                                                                                    | 25                                                                                                             | 6                                                                                                                             | 0                                                                                                                            | -6                                                                                                                        | Not Met                                                                                                                                                                                |
|            |                            | CWHvm2 Cw Med<br>CWHvm2 Cw Poor                                                                                                                                                                                                                                | 259<br>1,631                                                                                                | 120<br>3,246                                                                                                                      | 379<br>4,877                                                                                                                          | 28<br>28                                                                                                       | 106<br>1,366                                                                                                                  | 351<br>4,715                                                                                                                 | 244<br>3,349                                                                                                              | Met THLB<br>Met NTHLB                                                                                                                                                                  |
|            | I                          |                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                   |                                                                                                                                       | 20                                                                                                             | 1.000                                                                                                                         |                                                                                                                              |                                                                                                                           |                                                                                                                                                                                        |
|            |                            | CWHvm2 HB Med                                                                                                                                                                                                                                                  | 124                                                                                                         | 226                                                                                                                               | 350                                                                                                                                   | 25                                                                                                             | 88                                                                                                                            | 254                                                                                                                          | 167                                                                                                                       | Met NTHLB                                                                                                                                                                              |
|            |                            | CWHvm2 S PoorPI                                                                                                                                                                                                                                                | 124<br>2                                                                                                    | 226<br>0                                                                                                                          | 350<br>2                                                                                                                              | 25<br>29                                                                                                       | 88<br>1                                                                                                                       | 254<br>2                                                                                                                     | 167<br>1                                                                                                                  | Met THLB                                                                                                                                                                               |
|            |                            | CWHvm2 S PoorPI<br>MHmm1 Cw Med<br>MHmm1 Cw Poor                                                                                                                                                                                                               | 124<br>2<br>26<br>68                                                                                        | 226<br>0<br>1<br>192                                                                                                              | 350<br>2<br>27<br>259                                                                                                                 | 25<br>29<br>65<br>28                                                                                           | 88<br>1<br>18<br>73                                                                                                           | 254<br>2<br>27<br>259                                                                                                        | 167<br>1<br>10<br>187                                                                                                     | Met THLB<br>Met THLB<br>Met NTHLB                                                                                                                                                      |
|            |                            | CWHvm2 S PoorPI<br>MHmm1 Cw Med<br>MHmm1 Cw Poor<br>MHwh1 Cw Med                                                                                                                                                                                               | 124<br>2<br>26<br>68<br>19                                                                                  | 226<br>0<br>1<br>192<br>25                                                                                                        | 350<br>2<br>27<br>259<br>44                                                                                                           | 25<br>29<br>65<br>28<br>68                                                                                     | 88<br>1<br>18<br>73<br>30                                                                                                     | 254<br>2<br>27<br>259<br>44                                                                                                  | 167<br>1<br>10<br>187<br>14                                                                                               | Met THLB<br>Met THLB<br>Met NTHLB<br>Met THLB                                                                                                                                          |
|            |                            | CWHvm2 S PoorPI<br>MHmm1 Cw Med<br>MHmm1 Cw Poor                                                                                                                                                                                                               | 124<br>2<br>26<br>68<br>19<br>376<br>6                                                                      | 226<br>0<br>1<br>192<br>25<br>391<br>47                                                                                           | 350<br>2<br>27<br>259<br>44<br>767<br>53                                                                                              | 25<br>29<br>65<br>28<br>68<br>29<br>68                                                                         | 88<br>1<br>18<br>73<br>30<br>222<br>36                                                                                        | 254<br>2<br>27<br>259<br>44<br>744<br>53                                                                                     | 167<br>1<br>10<br>187<br>14<br>522<br>17                                                                                  | Met THLB<br>Met THLB<br>Met NTHLB                                                                                                                                                      |
|            | Draney Total               | CWHvm2 S PoorPI<br>MHmm1 Cw Med<br>MHmm1 Cw Poor<br>MHwh1 Cw Med<br>MHwh1 Cw Poor<br>MHwh1 HB Med                                                                                                                                                              | 124<br>2<br>26<br>68<br>19<br>376<br>6                                                                      | 226<br>0<br>1<br>192<br>25<br>391<br>47<br>22,401                                                                                 | 350<br>2<br>27<br>259<br>44<br>767<br>53<br>37,219                                                                                    | 25<br>29<br>65<br>28<br>68<br>29<br>68                                                                         | 88<br>1<br>18<br>73<br>30<br>222<br>36                                                                                        | 254<br>2<br>27<br>259<br>44<br>744<br>53<br>29,797                                                                           | 167<br>1<br>10<br>187<br>14<br>522<br>17<br>18,903                                                                        | Met THLB Met THLB Met NTHLB Met THLB Met NTHLB Met NTHLB                                                                                                                               |
|            | Draney Total<br>Labouchere | CWHvm2 S PoorPI<br>MHmm1 Cw Med<br>MHmm1 Cw Poor<br>MHwh1 Cw Med<br>MHwh1 Cw Poor                                                                                                                                                                              | 124<br>2<br>26<br>68<br>19<br>376<br>6                                                                      | 226<br>0<br>1<br>192<br>25<br>391<br>47                                                                                           | 350<br>2<br>27<br>259<br>44<br>767<br>53                                                                                              | 25<br>29<br>65<br>28<br>68<br>29<br>68                                                                         | 88<br>1<br>18<br>73<br>30<br>222<br>36                                                                                        | 254<br>2<br>27<br>259<br>44<br>744<br>53                                                                                     | 167<br>1<br>10<br>187<br>14<br>522<br>17                                                                                  | Met THLB<br>Met THLB<br>Met NTHLB<br>Met THLB<br>Met NTHLB                                                                                                                             |
|            |                            | CWHvm2 S PoorPI<br>MHmm1 Cw Med<br>MHmm1 Cw Poor<br>MHwh1 Cw Poor<br>MHwh1 HB Med<br>CWHms2 Cw Med<br>CWHms2 Cw Poor<br>CWHms2 HB Good                                                                                                                         | 124<br>2<br>26<br>68<br>19<br>376<br>6<br>14,818<br>260<br>206<br>15                                        | 226<br>0<br>1<br>192<br>25<br>391<br>47<br>22,401<br>555<br>832<br>37                                                             | 350<br>2<br>27<br>259<br>44<br>767<br>53<br>37,219<br>815<br>1,038<br>51                                                              | 25<br>29<br>65<br>28<br>68<br>29<br>68<br>35<br>53<br>43<br>38                                                 | 88<br>1<br>18<br>73<br>30<br>222<br>36<br>10,894<br>432<br>446<br>19                                                          | 254<br>2<br>27<br>259<br>44<br>744<br>53<br>29,797<br>628<br>608<br>0                                                        | 167<br>1 10<br>187<br>14<br>522<br>17<br>18,903<br>196<br>162<br>-19                                                      | Met THLB Met THLB Met NTHLB Met NTHLB Met NTHLB Met NTHLB Met NTHLB Mot NTHLB Met NTHLB Met NTHLB Not Met                                                                              |
|            |                            | CWHvm2 S PoorPI<br>MHmm1 Cw Med<br>MHmm1 Cw Poor<br>MHwh1 Cw Med<br>MHwh1 Cw Poor<br>MHwh1 HB Med<br>CWHms2 Cw Med<br>CWHms2 Cw Poor                                                                                                                           | 124<br>2<br>26<br>68<br>19<br>376<br>6<br>14,818<br>260<br>206                                              | 226<br>0<br>1<br>192<br>25<br>391<br>47<br>22,401<br>555<br>832                                                                   | 350<br>2<br>27<br>259<br>44<br>767<br>53<br>37,219<br>815<br>1,038                                                                    | 25<br>29<br>65<br>28<br>68<br>29<br>68<br>35<br>53<br>43                                                       | 88<br>1<br>18<br>73<br>30<br>222<br>36<br>10,894<br>432<br>446                                                                | 254<br>2<br>27<br>259<br>44<br>744<br>53<br>29,797<br>628<br>608                                                             | 167<br>1<br>10<br>187<br>14<br>522<br>17<br>18,903<br>196<br>162                                                          | Met THLB Met THLB Met NTHLB Met THLB Met NTHLB Met NTHLB Met NTHLB Met NTHLB                                                                                                           |
|            |                            | CWHvm2 S PoorPI<br>MHmm1 Cw Med<br>MHmm1 Cw Poor<br>MHwh1 Cw Med<br>MHwh1 Cw Poor<br>MHwh1 HB Med<br>CWHms2 Cw Med<br>CWHms2 Cw Poor<br>CWHms2 HB Good<br>CWHms2 HB Med<br>CWHms2 HB Poor<br>CWHms2 S Med                                                      | 124<br>2<br>26<br>68<br>19<br>376<br>6<br>14,818<br>260<br>206<br>15<br>663<br>43                           | 226<br>0<br>1<br>192<br>25<br>391<br>47<br>22,401<br>555<br>832<br>37<br>2,274<br>834<br>64                                       | 350<br>2<br>27<br>259<br>44<br>767<br>53<br>37,219<br>815<br>1,038<br>51<br>2,938<br>877<br>112                                       | 25<br>29<br>65<br>28<br>68<br>29<br>68<br>35<br>53<br>43<br>38<br>38<br>38<br>61                               | 88<br>1<br>18<br>73<br>30<br>222<br>36<br>10,894<br>432<br>446<br>19<br>1,116<br>333<br>69                                    | 254<br>2<br>27<br>259<br>44<br>744<br>53<br>29,797<br>628<br>608<br>0<br>1,558<br>577<br>112                                 | 167<br>1 10<br>187<br>14<br>522<br>17<br>18,903<br>196<br>162<br>-19<br>442<br>244<br>44                                  | Met THLB Met THLB Met NTHLB Met THLB Met NTHLB Met THLB                  |
|            |                            | CWHvm2 S PoorPI MHmm1 Cw Med MHmm1 Cw Poor MHwh1 Cw Poor MHwh1 Cw Poor MHwh1 HB Med  CWHms2 Cw Med CWHms2 Cw Poor CWHms2 HB Good CWHms2 HB Med CWHms2 HB Poor CWHms2 S Med CWHvm3 Cw Med                                                                       | 124<br>2 26<br>68<br>19<br>376<br>6<br>14,818<br>260<br>206<br>15<br>663<br>43                              | 226<br>0<br>1<br>192<br>25<br>391<br>47<br>22,401<br>555<br>832<br>37<br>2,274<br>834<br>64<br>177                                | 350<br>2<br>27<br>259<br>44<br>767<br>53<br>37,219<br>815<br>1,038<br>51<br>2,938<br>877<br>112<br>192                                | 25<br>29<br>65<br>28<br>68<br>29<br>68<br>35<br>53<br>43<br>38<br>38                                           | 88<br>1<br>18<br>73<br>30<br>222<br>36<br>10,894<br>432<br>446<br>19<br>1,116<br>333<br>69<br>90                              | 254<br>2<br>27<br>259<br>44<br>744<br>53<br>29,797<br>628<br>608<br>0<br>1,558<br>577                                        | 167<br>1<br>10<br>187<br>14<br>522<br>17<br>18,903<br>196<br>162<br>-19<br>442<br>244                                     | Met THLB Met THLB Met NTHLB Not Met Met NTHLB Met NTHLB Met NTHLB Met THLB Met THLB                                        |
|            |                            | CWHvm2 S PoorPI MHmm1 Cw Med MHmm1 Cw Poor MHwh1 Cw Med MHwh1 Cw Poor MHwh1 HB Med  CWHms2 Cw Med CWHms2 Cw Poor CWHms2 HB Good CWHms2 HB Poor CWHms2 HB Poor CWHms2 S Med CWHvm3 Cw Med CWHvm3 Cw Poor CWHvm3 Cw Poor                                         | 124<br>2<br>26<br>68<br>19<br>376<br>6<br>14,818<br>260<br>206<br>15<br>663<br>43<br>49<br>15<br>26<br>374  | 226<br>0<br>1<br>192<br>25<br>391<br>47<br>22,401<br>555<br>832<br>37<br>2,274<br>834<br>64<br>177<br>307<br>2,291                | 350<br>2<br>27<br>259<br>44<br>767<br>53<br>37,219<br>815<br>1,038<br>51<br>2,938<br>877<br>112<br>192<br>332<br>2,665                | 25<br>29<br>65<br>28<br>68<br>29<br>68<br>35<br>53<br>43<br>38<br>38<br>61<br>47<br>47<br>42                   | 88<br>1<br>18<br>73<br>30<br>222<br>36<br>10,894<br>432<br>446<br>19<br>1,116<br>333<br>69<br>90<br>156<br>1,119              | 254<br>2<br>27<br>259<br>44<br>744<br>53<br>29,797<br>628<br>608<br>0<br>1,558<br>577<br>112<br>94<br>175<br>1,764           | 167<br>1<br>10<br>187<br>14<br>522<br>17<br>18,903<br>196<br>162<br>-19<br>442<br>244<br>44<br>4<br>19<br>644             | Met THLB Met THLB Met NTHLB Met THLB Met NTHLB   |
|            |                            | CWHvm2 S PoorPI MHmm1 Cw Med MHmm1 Cw Poor MHwh1 Cw Med MHwh1 Cw Poor MHwh1 HB Med  CWHms2 Cw Med CWHms2 Cw Poor CWHms2 HB Good CWHms2 HB Med CWHms2 HB Poor CWHms2 S Med CWHvm3 Cw Med CWHvm3 Cw Med CWHvm3 Cw Poor CWHvm3 HB Med CWHvm3 HB Med CWHvm3 HB Med | 124<br>2<br>26<br>68<br>19<br>376<br>6<br>14,818<br>260<br>206<br>43<br>43<br>49<br>15<br>663<br>74<br>14   | 226<br>0<br>1<br>192<br>25<br>391<br>47<br>22,401<br>555<br>832<br>37<br>2,274<br>834<br>64<br>177<br>307<br>2,291<br>1,353       | 350<br>2<br>27<br>259<br>44<br>767<br>53<br>37,219<br>815<br>1,038<br>877<br>112<br>192<br>365<br>1,367                               | 25<br>29<br>65<br>28<br>68<br>29<br>68<br>35<br>53<br>43<br>38<br>38<br>61<br>47<br>47<br>42<br>42             | 88<br>1<br>18<br>73<br>30<br>222<br>36<br>10,894<br>432<br>446<br>19<br>1,116<br>333<br>69<br>90<br>156<br>1,119<br>574       | 254<br>2<br>27<br>259<br>44<br>744<br>53<br>29,797<br>628<br>608<br>0<br>1,558<br>577<br>112<br>94<br>175<br>1,764<br>1,039  | 167<br>1 10<br>187<br>14<br>522<br>17<br>18,903<br>196<br>162<br>-19<br>442<br>244<br>44<br>4<br>19<br>644<br>464         | Met THLB Met THLB Met NTHLB Not Met Met NTHLB Met NTHLB Met NTHLB Met THLB Met THLB Met THLB Met THLB Met NTHLB            |
|            |                            | CWHvm2 S PoorPI MHmm1 Cw Med MHmm1 Cw Poor MHwh1 Cw Poor MHwh1 Cw Poor MHwh1 HB Med  CWHms2 Cw Med CWHms2 HB Good CWHms2 HB Med CWHms2 HB Poor CWHms2 S Med CWHvm3 Cw Med CWHvm3 Cw Poor CWHvm3 HB Med CWHvm3 HB Med CWHvm3 HB Med CWHvm3 HB Med               | 124<br>2<br>26<br>68<br>19<br>376<br>6<br>14,818<br>260<br>206<br>15<br>663<br>43<br>49<br>15<br>26<br>374  | 226<br>0<br>1<br>192<br>25<br>391<br>47<br>22,401<br>555<br>832<br>37<br>2,274<br>834<br>64<br>177<br>307<br>2,291                | 350<br>2<br>27<br>259<br>44<br>767<br>53<br>37,219<br>815<br>1,038<br>51<br>2,938<br>877<br>112<br>192<br>332<br>2,665                | 25<br>29<br>65<br>28<br>68<br>29<br>68<br>35<br>53<br>43<br>38<br>38<br>38<br>47<br>47<br>47<br>42<br>42<br>0  | 88<br>1<br>18<br>73<br>30<br>222<br>36<br>10,894<br>432<br>446<br>19<br>1,116<br>333<br>69<br>90<br>156<br>1,119              | 254<br>2<br>27<br>259<br>44<br>744<br>53<br>29,797<br>628<br>608<br>0<br>1,558<br>577<br>112<br>94<br>175<br>1,764           | 167<br>1<br>10<br>187<br>14<br>522<br>17<br>18,903<br>196<br>162<br>-19<br>442<br>244<br>44<br>4<br>19<br>644             | Met THLB Met THLB Met NTHLB Met NTHLB Met NTHLB Met NTHLB Met NTHLB Met NTHLB Not Met Met NTHLB Met NTHLB Met NTHLB Met NTHLB Met NTHLB Met THLB Met THLB Met THLB Met NTHLB Met NTHLB |
|            | Labouchere                 | CWHvm2 S PoorPI MHmm1 Cw Med MHmm1 Cw Poor MHwh1 Cw Med MHwh1 Cw Poor MHwh1 HB Med  CWHms2 Cw Med CWHms2 Cw Poor CWHms2 HB Good CWHms2 HB Med CWHms2 HB Poor CWHms2 S Med CWHvm3 Cw Med CWHvm3 Cw Med CWHvm3 Cw Poor CWHvm3 HB Med CWHvm3 HB Med CWHvm3 HB Med | 124<br>22<br>68<br>19<br>376<br>6<br>14,818<br>260<br>206<br>15<br>663<br>43<br>49<br>15<br>26<br>374<br>14 | 226<br>0<br>1<br>192<br>25<br>391<br>47<br>22,401<br>555<br>832<br>37<br>2,274<br>834<br>64<br>177<br>307<br>2,291<br>1,353<br>77 | 350<br>2<br>27<br>259<br>44<br>767<br>53<br>37,219<br>815<br>1,038<br>51<br>2,938<br>877<br>112<br>192<br>332<br>2,665<br>1,367<br>82 | 25<br>29<br>65<br>28<br>68<br>29<br>68<br>35<br>53<br>43<br>38<br>38<br>38<br>47<br>47<br>47<br>42<br>42<br>42 | 88<br>1<br>18<br>73<br>30<br>222<br>36<br>10,894<br>432<br>446<br>19<br>1,116<br>333<br>69<br>90<br>1,56<br>1,119<br>574<br>0 | 254<br>2<br>27<br>259<br>44<br>744<br>53<br>29,797<br>628<br>608<br>0<br>1,558<br>577<br>112<br>94<br>1,75<br>1,764<br>1,039 | 167<br>1<br>10<br>187<br>14<br>522<br>17<br>18,903<br>196<br>162<br>-19<br>442<br>244<br>4<br>4<br>19<br>644<br>464<br>76 | Met THLB Met THLB Met NTHLB Not Met Met NTHLB Met NTHLB Met NTHLB Met THLB Met THLB Met THLB Met THLB Met NTHLB            |

| MO<br>2009 | Landscape Unit                | Site Series<br>Surrogate                          | THLB<br>(ha)       | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition           |
|------------|-------------------------------|---------------------------------------------------|--------------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|--------------------------------|
|            |                               | CWHvm1 HB Good<br>CWHvm1 HB Med<br>CWHvm1 HB Poor | 180<br>1,645<br>42 | 266<br>3,421<br>330         | 446<br>5,066<br>372   | 58<br>58<br>58                 | 259<br>2,938<br>216    | 82<br>3,356<br>207                       | -177<br>417<br>-9    | Not Met<br>Met THLB<br>Not Met |
|            |                               | CWHvm1 S Good<br>CWHvm1 S Med                     | 44<br>59           | 469<br>182                  | 513<br>241            | 58<br>58                       | 298<br>140             | 404<br>170                               | 106<br>31            | Met NTHLB<br>Met NTHLB         |
|            |                               | CWHvm1 S PoorPl                                   | 1                  | 5                           | 6                     | 29                             | 2                      | 6                                        | 5                    | Met NTHLB                      |
|            |                               | CWHvm2 Cw Med<br>CWHvm2 Cw Poor                   | 129<br>751         | 655<br>6,248                | 784<br>6,999          | 65<br>65                       | 510<br>4,549           | 776<br>6,882                             | 266<br>2,332         | Met NTHLB<br>Met NTHLB         |
|            |                               | CWHvm2 HB Good                                    | 14                 | 23                          | 36                    | 59                             | 21                     | 13                                       | -8                   | Not Met                        |
|            |                               | CWHvm2 HB Med<br>CWHvm2 HB Poor                   | 141<br>4           | 1,863<br>998                | 2,004<br>1,003        | 59<br>59                       | 1,183<br>591           | 1,775<br>830                             | 592<br>238           | Met NTHLB<br>Met NTHLB         |
|            |                               | MHmm1 Cw Med                                      | 3                  | 12                          | 15                    | 65                             | 10                     | 15                                       | 5                    | Met NTHLB                      |
|            |                               | MHmm1 Cw Poor<br>MHmm1 HB Med                     | 44<br>9            | 1,239<br>95                 | 1,283<br>104          | 65<br>59                       | 834<br>62              | 1,225<br>81                              | 391<br>20            | Met NTHLB<br>Met NTHLB         |
|            | Nekite Total<br>Nusatsum      | CWHds2 HB Good                                    | 5,519<br>14        | 21,123                      | 26,642<br>14          | 59<br>60                       | 16,657<br>8            | 22,933<br>0                              | 6,276<br>-8          | Not Met                        |
|            | Nusatsum                      | CWHds2 HB Med                                     | 9                  | 21                          | 30                    | 26                             | 8                      | 2                                        | -5                   | Not Met                        |
|            |                               | CWHws2 HB Good<br>CWHws2 HB Med                   | 1<br>112           | 7<br>1,272                  | 9<br>1,384            | 26<br>26                       | 2<br>360               | 0<br>233                                 | -2<br>-127           | Not Met<br>Not Met             |
|            | N                             | MHmm2 Fd Med                                      | 1                  | 10                          | 11                    | 49                             | 6                      | 0                                        | -6                   | Not Met                        |
|            | Nusatsum Total<br>Saloompt    | CWHds2 Cw Med                                     | 137<br>27          | 1,310<br>78                 | 1,448<br>104          | 37<br>22                       | 384<br>23              | 235<br>20                                | -149<br>-3           | Not Met                        |
|            | ·                             | CWHds2 Cw Poor<br>CWHds2 Fd Poor                  | 5<br>59            | 16<br>17                    | 21<br>76              | 60<br>22                       | 13<br>17               | 0<br>73                                  | -13<br>56            | Not Met<br>Met THLB            |
|            |                               | CWHds2 HB Good                                    | 8                  | 36                          | 44                    | 60                             | 26                     | 0                                        | -26                  | Not Met                        |
|            |                               | CWHds2 HB Med<br>CWHds2 HB Poor                   | 37<br>11           | 113<br>25                   | 151<br>36             | 26<br>26                       | 39<br>9                | 86<br>34                                 | 46<br>25             | Met NTHLB<br>Met NTHLB         |
|            |                               | CWHms2 Cw Med                                     | 30                 | 19                          | 49                    | 53                             | 26                     | 0                                        | -26                  | Not Met                        |
|            |                               | CWHms2 Fd Med<br>CWHms2 Fd Poor                   | 41<br>27           | 57<br>92                    | 98<br>119             | 17<br>17                       | 17<br>20               | 0<br>68                                  | -17<br>48            | Not Met<br>Met NTHLB           |
|            |                               | CWHms2 HB Good<br>CWHms2 HB Med                   | 130<br>735         | 88<br>1,137                 | 219<br>1,871          | 23<br>23                       | 50<br>430              | 0<br>825                                 | -50<br>395           | Not Met<br>Met NTHLB           |
|            |                               | CWHms2 S Good                                     | 3                  | 1                           | 4                     | 61                             | 2                      | 0                                        | -2                   | Not Met                        |
|            |                               | CWHws2 Cw Med<br>CWHws2 Cw Poor                   | 86<br>33           | 149<br>97                   | 235<br>130            | 50<br>60                       | 117<br>78              | 199<br>97                                | 81<br>20             | Met THLB<br>Met THLB           |
|            |                               | CWHws2 Fd Good                                    | 16                 | 10                          | 26                    | 18                             | 5                      | 0                                        | -5                   | Not Met                        |
|            |                               | CWHws2 Fd Med<br>CWHws2 Fd Poor                   | 2<br>27            | 0<br>21                     | 2<br>48               | 18<br>22                       | 0<br>11                | 0<br>48                                  | 0<br>38              | Not Met<br>Met NTHLB           |
|            |                               | CWHws2 HB Good                                    | 21                 | 18                          | 39                    | 26                             | 10                     | 0                                        | -10<br>1.076         | Not Met                        |
|            |                               | CWHws2 HB Med<br>CWHws2 HB Poor                   | 898<br>29          | 1,119<br>1,119              | 2,017<br>1,148        | 26<br>26                       | 524<br>298             | 1,600<br>1,130                           | 1,076<br>831         | Met NTHLB<br>Met NTHLB         |
|            |                               | CWHws2 S Med<br>MHmm2 HB Med                      | 29<br>7            | 9<br>149                    | 38<br>156             | 60<br>59                       | 23<br>92               | 38<br>137                                | 15<br>45             | Met THLB<br>Met NTHLB          |
|            |                               | MHmm2 HB Poor                                     | 8                  | 482                         | 490                   | 25                             | 122                    | 490                                      | 367                  | Met NTHLB                      |
|            | Saloompt Total<br>Smith Sound | CWHvh1 Cw Good                                    | 2,269<br>22        | 4,852<br>62                 | 7,121<br>84           | 35<br>27                       | 1,955<br>23            | 4,846<br>0                               | 2,892<br>-23         | Not Met                        |
|            |                               | CWHvh1 Cw Med                                     | 828                | 1,583                       | 2,411                 | 29                             | 699                    | 1,716                                    | 1,017                | Met NTHLB                      |
|            |                               | CWHvh1 Cw Poor<br>CWHvh1 HB Good                  | 2,078<br>90        | 11,869<br>157               | 13,948<br>247         | 29<br>25                       | 4,045<br>62            | 10,611<br>0                              | 6,567<br>-62         | Met NTHLB<br>Not Met           |
|            |                               | CWHvh1 HB Med<br>CWHvh1 HB Poor                   | 135<br>54          | 790<br>181                  | 925<br>235            | 29<br>68                       | 268<br>160             | 303<br>70                                | 35<br>-89            | Met NTHLB<br>Not Met           |
|            |                               | CWHvh2 Cw Poor                                    | 4                  | 7                           | 10                    | 29                             | 3                      | 10                                       | 7                    | Met NTHLB                      |
|            | Smith Sound Total             | CWHvm1 Cw Poor                                    | 3,216              | 14,651                      | 17,867                | 28<br>33                       | 5,261                  | 12,717                                   | 7,456                | Met NTHLB                      |
|            | Smitley/Noeick                | CWHms2 Cw Good                                    | 39                 | 4                           | 42                    | 38                             | 16                     | 0                                        | -16                  | Not Met                        |
|            |                               | CWHms2 Cw Med<br>CWHms2 Cw Poor                   | 11<br>7            | 4<br>0                      | 15<br>7               | 53<br>43                       | 8<br>3                 | 12<br>0                                  | 4<br>-3              | Met THLB<br>Not Met            |
|            |                               | CWHms2 Fd Good<br>CWHms2 Fd Med                   | 76<br>221          | 51<br>183                   | 128<br>405            | 38<br>29                       | 49<br>117              | 0<br>42                                  | -49<br>-75           | Not Met<br>Not Met             |
|            |                               | CWHms2 Fd Poor                                    | 55                 | 139                         | 194                   | 29                             | 56                     | 59                                       | 2                    | Met THLB                       |
|            |                               | CWHms2 HB Good<br>CWHms2 HB Med                   | 217<br>579         | 47<br>728                   | 263<br>1,306          | 38<br>38                       | 100<br>496             | 0<br>447                                 | -100<br>-49          | Not Met<br>Not Met             |
|            |                               | CWHms2 HB Poor                                    | 1                  | 249                         | 250                   | 38                             | 95                     | 141                                      | 46                   | Met NTHLB                      |
|            |                               | CWHms2 S Med<br>CWHms2 S PoorPl                   | 14<br>35           | 22<br>57                    | 36<br>93              | 61<br>21                       | 22<br>19               | 0<br>24                                  | -22<br>5             | Not Met<br>Met THLB            |
|            |                               | CWHws2 Cw Good<br>CWHws2 Cw Med                   | 3<br>56            | 0<br>46                     | 3<br>101              | 36<br>50                       | 1<br>51                | 0<br>82                                  | -1<br>32             | Not Met<br>Met THLB            |
|            |                               | CWHws2 Fd Med                                     | 36                 | 131                         | 167                   | 30                             | 50                     | 24                                       | -26                  | Not Met                        |
|            |                               | CWHws2 Fd Poor<br>CWHws2 HB Med                   | 21<br>1,119        | 26<br>2,271                 | 48<br>3,390           | 36<br>43                       | 17<br>1,458            | 0<br>1,768                               | -17<br>310           | Not Met<br>Met THLB            |
|            |                               | CWHws2 HB Poor                                    | 15                 | 1,138                       | 1,152                 | 43                             | 495                    | 559                                      | 64                   | Met NTHLB                      |
|            |                               | CWHws2 S Good<br>CWHws2 S PoorPl                  | 5<br>19            | 1<br>145                    | 7<br>164              | 43<br>21                       | 3<br>34                | 0<br>74                                  | -3<br>40             | Not Met<br>Met NTHLB           |
|            | Smitley/Noeick Total          | MHmm2 HB Med                                      | 65<br>2,592        | 1,117<br>6,359              | 1,182                 | 59<br>39                       | 697<br>3,788           | 460<br>3,692                             | -238<br>-95          | Not Met                        |
|            | Smokehouse                    | CWHvh1 Cw Med                                     | 2,592              | 41                          | 8,951<br>45           | 29                             | 13                     | 3,692                                    | -95<br>28            | Met NTHLB                      |

| MO<br>2009 | Landscape Unit       | Site Series<br>Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | THLB<br>(ha)                                                                                                                                       | PFLB<br>non<br>THLB<br>(ha)                                                                                                                                | Total<br>PFLB<br>(ha)                                                                                                                                                       | Old<br>Growth<br>Target<br>(%)                                                                                                          | Target<br>Area<br>(ha)                                                                                                                                 | Current<br>Old<br>Growth<br>Area<br>(ha)                                                                                                        | Surplus<br>/ Deficit                                                                                                                                                         | Current<br>Condition                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                      | CWHvh1 Cw Poor<br>CWHvm1 Cw Med<br>CWHvm1 Cw Poor<br>CWHvm1 HB Good<br>CWHvm1 HB Med<br>CWHvm2 Cw Med<br>CWHvm2 Cw Poor<br>CWHvm2 HB Med                                                                                                                                                                                                                                                                                                                                                                   | 2<br>528<br>1,552<br>5<br>189<br>20<br>508<br>4                                                                                                    | 3<br>1,764<br>4,844<br>147<br>2,230<br>145<br>4,584<br>1,132                                                                                               | 6<br>2,292<br>6,395<br>152<br>2,420<br>165<br>5,092<br>1,136                                                                                                                | 29<br>28<br>28<br>25<br>25<br>28<br>28<br>25                                                                                            | 2<br>642<br>1,791<br>38<br>605<br>46<br>1,426<br>284                                                                                                   | 1,698<br>5,987<br>17<br>1,577<br>113<br>4,842<br>979                                                                                            | 4<br>1,056<br>4,196<br>-21<br>972<br>67<br>3,416<br>694                                                                                                                      | Met NTHLB Met NTHLB Met NTHLB Not Met Met NTHLB Met NTHLB Met NTHLB Met NTHLB                                                                                                                                                                                                                                                                                                                                          |
|            |                      | MHmm1 Cw Poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                 | 583                                                                                                                                                        | 596                                                                                                                                                                         | 28                                                                                                                                      | 167                                                                                                                                                    | 566                                                                                                                                             | 399                                                                                                                                                                          | Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Smokehouse Total     | CWI Ima 2 Cur Mad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,824                                                                                                                                              | 15,475                                                                                                                                                     | 18,299                                                                                                                                                                      | 27<br>53                                                                                                                                | 5,013                                                                                                                                                  | 15,825                                                                                                                                          | 10,812                                                                                                                                                                       | Mot TIII D                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | South Bentinck       | CWHms2 Cw Med<br>CWHms2 Fd Med<br>CWHms2 Fd Poor<br>CWHms2 HB Good<br>CWHms2 HB Med<br>CWHms2 HB Poor<br>CWHms2 S PoorPl<br>CWHws2 Cw Med                                                                                                                                                                                                                                                                                                                                                                  | 8<br>35<br>11<br>20<br>161<br>2<br>67<br>12                                                                                                        | 0<br>4<br>28<br>5<br>1,232<br>594<br>17<br>0                                                                                                               | 8<br>39<br>39<br>25<br>1,393<br>596<br>84<br>12                                                                                                                             | 29<br>29<br>38<br>38<br>38<br>21<br>50                                                                                                  | 4<br>11<br>11<br>10<br>530<br>226<br>18<br>6                                                                                                           | 8<br>16<br>7<br>0<br>867<br>344<br>75<br>12                                                                                                     | 4<br>5<br>-5<br>-10<br>338<br>117<br>57                                                                                                                                      | Met THLB Met THLB Not Met Not Met Met NTHLB Met NTHLB Met THLB Met THLB                                                                                                                                                                                                                                                                                                                                                |
|            |                      | CWHws2 Fd Med<br>CWHws2 Fd Poor<br>CWHws2 HB Med<br>CWHws2 HB Poor<br>CWHws2 S Med<br>CWHws2 S PoorPl<br>MHmm2 Cw Med                                                                                                                                                                                                                                                                                                                                                                                      | 8<br>38<br>184<br>24<br>3<br>35<br>9                                                                                                               | 0<br>51<br>468<br>832<br>1<br>0<br>2                                                                                                                       | 8<br>89<br>652<br>855<br>4<br>35<br>12                                                                                                                                      | 30<br>36<br>43<br>43<br>60<br>21                                                                                                        | 2<br>32<br>281<br>368<br>3<br>7<br>8                                                                                                                   | 7<br>38<br>384<br>421<br>1<br>35                                                                                                                | 5<br>6<br>103<br>53<br>-1<br>28<br>3                                                                                                                                         | Met THLB Met THLB Met THLB Met NTHLB Not Met Met THLB Met THLB Met THLB                                                                                                                                                                                                                                                                                                                                                |
|            |                      | MHmm2 Fd Poor<br>MHmm2 HB Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>12                                                                                                                                            | 24<br>137                                                                                                                                                  | 26<br>148                                                                                                                                                                   | 49<br>59                                                                                                                                | 13<br>88                                                                                                                                               | 2<br>21                                                                                                                                         | -10<br>-67                                                                                                                                                                   | Not Met<br>Not Met                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | South Bentinck Total | MHmm2 S PoorPl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>634                                                                                                                                           | 3,395                                                                                                                                                      | 4,029                                                                                                                                                                       | 29<br>41                                                                                                                                | 1,617                                                                                                                                                  | 2,251                                                                                                                                           | 633                                                                                                                                                                          | Met THLB                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Taleomey/Asseek      | CMAunp HB Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                  | 32                                                                                                                                                         | 35                                                                                                                                                                          | 42                                                                                                                                      | 1,017                                                                                                                                                  | 35                                                                                                                                              | 20                                                                                                                                                                           | Met NTHLB                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Taleomey/Asseek To   | CWHms2 Cw Good CWHms2 Cw Med CWHms2 Fd Good CWHms2 Fd Med CWHms2 Fd Poor CWHms2 HB Good CWHms2 HB Poor CWHms2 S Med CWHws2 Cw Good CWHws2 Cw Good CWHws2 Fd Med CWHws2 Fd Poor CWHws2 Fd Poor CWHws2 Fd Poor CWHws2 HB Poor CWHws2 HB Good CWHws2 HB Med CWHws2 HB Med CWHws2 Fd Poor CWHws2 Fd Med CWHws2 Fd Poor CWHws2 Fd Poor CWHws2 Fd Poor CWHws2 Fd Med CWHws2 Fd Poor CWHws2 Fd Med CWHws2 S Med CWHws2 S PoorPl MHmm2 Cw Poor MHmm2 Fd Med MHmm2 HB Med MHmm2 HB Med MHmm2 HB Poor MHmm2 S PoorPl | 17<br>6<br>5<br>411<br>196<br>111<br>1,158<br>44<br>9<br>4<br>34<br>8<br>122<br>33<br>28<br>822<br>62<br>43<br>7<br>2<br>15<br>300<br>38<br>8<br>8 | 0<br>12<br>23<br>295<br>396<br>83<br>1,171<br>335<br>5<br>17<br>34<br>78<br>80<br>264<br>22<br>2,049<br>1,108<br>17<br>26<br>34<br>9<br>889<br>2,065<br>32 | 17<br>18<br>27<br>707<br>592<br>194<br>2,329<br>378<br>14<br>21<br>69<br>85<br>202<br>297<br>50<br>2,871<br>1,170<br>60<br>33<br>36<br>24<br>1,189<br>2,103<br>39<br>12,563 | 38<br>53<br>38<br>29<br>29<br>38<br>38<br>61<br>36<br>50<br>60<br>30<br>36<br>43<br>43<br>43<br>43<br>621<br>65<br>49<br>59<br>42<br>29 | 6<br>10<br>10<br>205<br>172<br>74<br>885<br>144<br>9<br>8<br>34<br>51<br>107<br>21<br>1,235<br>503<br>36<br>7<br>23<br>12<br>701<br>883<br>11<br>5,224 | 0<br>3<br>0<br>256<br>126<br>0<br>370<br>233<br>14<br>0<br>17<br>31<br>77<br>94<br>0<br>1,414<br>639<br>17<br>20<br>25<br>11<br>580<br>976<br>4 | -6<br>-7<br>-10<br>51<br>-45<br>-74<br>-515<br>89<br>5<br>-8<br>-18<br>-20<br>16<br>-13<br>-21<br>179<br>136<br>-19<br>13<br>2<br>-1<br>-122<br>-1<br>-122<br>-2<br>-8<br>-8 | Not Met Not Met Not Met Met THLB Not Met Not Met Not Met Not Met Not Met Met THLB Not Met Met THLB Not Met Met THLB Met THLB Met THLB Not Met Met NTHLB Not Met Met NTHLB Not Met |
|            | Twin                 | CWHms2 Cw Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                  | 0                                                                                                                                                          | 7                                                                                                                                                                           | 38                                                                                                                                      | 3                                                                                                                                                      | 0                                                                                                                                               | -3                                                                                                                                                                           | Not Met                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                      | CWHms2 Cw Med CWHms2 HB Good CWHms2 HB Poor CWHvm1 Cw Med CWHvm1 Fd Med CWHvm1 HB Good CWHvm1 HB Good CWHvm1 HB Poor CWHvm1 S Good CWHvm1 S Med CWHvm1 S PoorPl CWHvm2 Cw Med CWHvm2 HB Good CWHvm2 HB Med CWHvm3 HB Med                                                                                                                         | 63<br>151<br>508<br>7<br>96<br>1<br>40<br>765<br>6<br>4<br>105<br>20<br>43<br>4<br>155<br>130<br>3<br>5                                            | 32<br>44<br>2,115<br>874<br>104<br>0<br>10<br>829<br>998<br>4<br>34<br>21<br>7<br>7<br>0<br>381<br>995<br>1,057<br>0                                       | 95<br>195<br>2,623<br>882<br>200<br>1,593<br>1,005<br>8<br>140<br>40<br>50<br>4<br>536<br>1,125<br>1,060<br>5                                                               | 53<br>38<br>38<br>46<br>35<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42                                | 50<br>74<br>997<br>335<br>92<br>0<br>21<br>669<br>422<br>3<br>59<br>8<br>23<br>2<br>225<br>473<br>445<br>3                                             | 0<br>0<br>1,760<br>268<br>0<br>0<br>0<br>244<br>211<br>0<br>0<br>0<br>0<br>251<br>775<br>365<br>0<br>0                                          | -50<br>-74<br>763<br>-67<br>-92<br>0<br>-21<br>-425<br>-210<br>-3<br>-59<br>-8<br>-23<br>-2<br>26<br>302<br>-80<br>-3<br>5                                                   | Not Met Not Met Met NTHLB Not Met Not Het Not Met Met THLB Not Met                                                             |
|            | Twin Total           | WILLIAM FILD INIEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,119                                                                                                                                              | 7,611                                                                                                                                                      | 9,729                                                                                                                                                                       | 42                                                                                                                                      | 3,951                                                                                                                                                  | 3,927                                                                                                                                           | -24                                                                                                                                                                          | WICE MITTED                                                                                                                                                                                                                                                                                                                                                                                                            |

| MO<br>2009 | Landscape Unit | Site Series<br>Surrogate | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition |
|------------|----------------|--------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|----------------------|
| SCC T      | otal           |                          | 41,066       | 119,555                     | 160,621               | 39                             | 60,835                 | 109,005                                  | 48,170               |                      |
| Total      | Total          |                          |              | 510,433                     | 650,729               | 38                             | 250,979                | 432,591                                  | 181,612              |                      |