## Mid Coast Timber Supply Area Timber Supply Review #3

# Analysis Assumptions Document (Data Package)

Version 2.3

May 10, 2010

Prepared for:

Mid Coast TSA Licensee/Agency Group

Prepared By:

Forsite Box 2079, 330-42<sup>nd</sup> Street SW Salmon Arm, B.C. V1E 4R1 (250) 832-3366 Cam Brown, MF, RPF



#### Record of Changes since V1.0 (March 10, 2009)

| Change                                                               | Who          | Date           |
|----------------------------------------------------------------------|--------------|----------------|
| Typos and minor text changes suggested by licensees and MoF,         | Cam Brown    | May 15, 2009   |
| plus NRL values reduced to reflect smaller THLB than in TSR2.        |              |                |
| Detail added for recreation and riparian netdowns.                   | Cam Brown    | May 20, 2009   |
| Fixed typo that showed total area of existing road was 3,721 ha      | Cam Brown    | June 17, 2009  |
| instead of 4,937 ha.                                                 |              |                |
| Corrected ocean classification so it was excluded from Total Area in |              |                |
| netdown table. Also fixed misclassified Indian Reserves and TFL      |              |                |
| TL's.                                                                |              |                |
| Numerous sections changed to reflect the EBM Order Amendments        | Cam Brown    | June 25, 2009  |
| made legal in March 2009. This included changes to Cw/Yc stand       |              |                |
| retention (Cedar Stewardship Areas), Important Fisheries             |              |                |
| Watersheds / Upland Streams areas, High Value Fish Habitat           |              |                |
| (Kimsquit), Old Seral Retention requirements, and Grizzly Bear       |              |                |
| Habitat areas.                                                       |              |                |
| Genetic gains for Ed and Cw were adjusted to reflect the portion of  | Cam Brown    | June 25, 2009  |
| the THI B where the species are planted (using AU's and SPU's)       |              | 00110 20, 2000 |
| Text clarifications/edits based on review comments from MER          | Cam Brown    | lune 25, 2009  |
| district staff ( lune 18-09 email from lennifer Barolet) Included    |              | burie 23, 2003 |
| regen assumptions adjustments (species %'s natural vs planted        |              |                |
| %'s, and initial planting density to 000 sph                         |              |                |
| Parks/Conservancy names undated arizzly bear Section 7 Notice        | lim Brown    | July 6, 2000   |
| toxt added. Codar Stowardship Areas toxt added                       |              | 50ly 0, 2009   |
| Operability deteast was undated as that ESA soils polygons were      | Com Prown    | luby 10, 2000  |
| operability dataset was updated so that ESA solis polygons were      | Calli Diowii | July 10, 2009  |
| FSA potdown largor                                                   |              |                |
| ESA fieldowin alger.                                                 | Com Prown    | huly 22, 2000  |
| Stand level retention % was increased to 4.4% (incremental above     | Calli Diowii | July 22, 2009  |
| all other netdowns).                                                 |              | Cant 17, 2000  |
|                                                                      | Calli Blown  | Sept 17, 2009  |
| IOW Siles and ESAS.                                                  | Care Drawn   | Oct 14, 2000   |
| Dispersed Retention and Visuals modeling methodology included in     | Cam Brown    | OCI 14, 2009   |
| Section 5.1, 5.2, and 6.2.                                           |              |                |
| A new AU (315) was added in section 4.1 for existing dispersed       |              |                |
| retention stands. Future dispersed retention treatments had yields   |              |                |
| Tactored off of clearcut AU S.                                       | 0 5          |                |
| Minimum narvest ages updated to include dispersed retention,         | Cam Brown    | Oct 14, 2009   |
| reflect adjusted regen assumptions, fix typos, and shift to 5 year   |              |                |
| Increments (instead of 10 yr).                                       | <u> </u>     |                |
| Appendix A updated to include Dispersed Retention Yield (AU 315).    | Cam Brown    | Oct 14, 2009   |
| Appendix B updated to reflect the old seral units being modeled and  | Cam Brown    | Oct 19, 2009   |
| their associated targets as taken from Sched 4 in the EBM orders.    |              |                |
| Natural disturbance regime altered to be consistent with RONV old    | Cam Brown    | Dec 15, 2009   |
| seral targets (section 7.2).                                         |              |                |
| Rationale added for modeling of harvest profile limits (partitions). | Mike Landers | March 1, 2010  |
| Typos and comments suggested by the MoF (AAC's added to              | Cam Brown    | April 14, 2010 |
| harvest profile tables (section 6.3)                                 |              |                |
| Clarification added re group selection vs clearcut with reserves and | Cam Brown    | May 10, 2010   |
| productivity impacts associated with forest edge. Sec 5.1            |              |                |

## ACKNOWLEDGEMENTS

The support and contributions from the following people and organizations was instrumental in the compilation of this document:

| International Forest Products Ltd.                 | Mike Landers<br>Angus Hope<br>Gerry Sommers<br>Joe Leblanc |
|----------------------------------------------------|------------------------------------------------------------|
| Western Forest Products Ltd.                       | Peter Kofoed                                               |
| B.C. Timber Sales                                  | Bob Brand<br>Lisa Gibbons                                  |
| Heiltsuk First Nation                              | Rina Gemeinhardt                                           |
| Gwa'Sala-'Nakwaxda'xw First Nation                 | Ted Stevens                                                |
| Capacity Forest Management                         | Corby Lamb<br>Jason Swanson<br>Ryan Clark                  |
| MFR – Coast Forest Region                          | Jim Brown                                                  |
| MFR – North Island – Central Coast Forest District | Christina Mardell<br>Jennifer Barolet<br>Paul Barolet      |
| Forsite                                            | Cam Brown<br>Simon Moreira-Munoz<br>Stephen Smyrl          |

This project was funded by the Forest Investment Account and was coordinated by Ian Robertson / Wendy Ravai on behalf of International Forest Products Ltd.

This work was prepared directly by or under the direct supervision of Cam Brown, RPF.

## TABLE OF CONTENTS

| 1.0        | INTRODUCTION                                                    | 1  |
|------------|-----------------------------------------------------------------|----|
| 1.1        | Purpose of the data package                                     |    |
| 1.2        | 2 Roles and Responsibilities                                    |    |
| 1.3        | B Description of the Land base                                  | 2  |
| 1.4        | History of the Annual Allowable Cut                             |    |
| 1.5        | 5 Current Practice and EBM                                      | 4  |
| 2.0        | THEMATIC DATA                                                   | 6  |
| 2.1        | Data Sources                                                    | 6  |
| 2.2        | 2 Forest Cover Inventory                                        | 7  |
| 3.0        | TIMBER HARVESTING LAND BASE                                     | 7  |
| 3.1        | Land Base Definitions                                           | 7  |
| 3.2        | 2 Exclusions from the Productive Forest Land Base (Spatial)     |    |
| 3          | 3.2.1 Ownership classes not part of the TSA                     |    |
| 3          | 3.2.2 Non-forest, non-productive and non-typed                  |    |
| 3          | 3.2.3 Non-commercial cover                                      |    |
| 3          | 3.2.4 Roads, trails, and landings                               |    |
| 3.3        | B Exclusions from the Timber Harvesting Land Base               |    |
| 3          | 3.3.1 Parks and Protected Areas                                 |    |
| 3          | 3.3.2 Inoperable or Inaccessible Areas                          |    |
| 3          | 3.3.3 ESAs and Unstable Terrain                                 |    |
| 3          | 3.3.4 Non-Merchantable or Problem Forest Types                  |    |
| 3          | 3.3.5 Low Productivity Sites                                    |    |
| 3          | 3.3.6 Cultural Heritage Resource Deductions                     |    |
| 3          | 3.3.7 Karst                                                     |    |
| 3          | 3.3.8 Wildille Habitat Aleas (WHA S)                            |    |
| 3          | 3.3.9 Mountain Goat Winter Range                                |    |
| 3          | 3.3.10 FRFA Ripalian Reserve and Management Zones               |    |
| 0          | 3.3.11 Recleation Features                                      |    |
| 3          | 3.3.12 EDM Nipanan Management                                   |    |
| 34         | L Evolusions from the Productive Forest Land Base (Non-Spatial) |    |
| +.U        | 3 4 1 ERM Objective 4 5 6 7 – First Nations Considerations      |    |
| 3          | 3.4.2 EBM Objective 15 – Red and Blue Listed Plant Communities  | 22 |
| 3          | 3.4.3 Stand Level Retention (EBM Obj. 16)                       |    |
| 3.5        | 5 Timber License Reversions                                     | 24 |
| 3.6        | Changes From TSR2                                               |    |
| 4.0        | GROWTH AND YIELD                                                |    |
| <b>⊿</b> 1 | Analysis I Inits                                                | 26 |
| 4.2        | Site Index                                                      |    |
| 4          | 4.2.1 Site Index Adjustment for Managed Stands                  |    |
| 4          | 4.2.2 Site Curves                                               |    |
| 4.3        | 3 Utilization Level                                             |    |
| 4.4        | Decay, Waste and Breakage for Unmanaged Stands                  |    |
| 4.5        | 5 Operational Adjustment Factors for Managed Stands             |    |
| 4.6        | Natural Stand Volume Projections                                |    |
| 4.7        | Managed Stand Yield Tables                                      |    |
| 4.8        | B Existing Timber Volume Check                                  |    |
| 5.0        | SILVICULTURE                                                    |    |
| 5.1        | Silviculture management regimes                                 |    |
|            |                                                                 |    |

| 5.2           | Regeneration Assumptions                                            |                    |
|---------------|---------------------------------------------------------------------|--------------------|
| 5.3           | Regeneration delay                                                  |                    |
| 5.4           | Gene resources — use of select seed                                 |                    |
| 5.5           | Silviculture History (defining existing managed stands)             |                    |
| 5.6           | Backlog and current not satisfactorily restocked areas (NSR)        |                    |
| 5.7           | Incremental Silviculture and Commercial Thinning                    |                    |
| 6.0           | TIMBER HARVESTING                                                   |                    |
| 61            | Minimum Harvestable Age / Merchantability Standards                 | 36                 |
| 6.2           | Harvest Priorities / Target Weightings                              | 37                 |
| 6.3           | Harvest Profiles                                                    | 38                 |
| 70            |                                                                     | 39                 |
| 7 1           |                                                                     | 20                 |
| 7.1           | Disturbance in the Nen THLP                                         |                    |
| 1.2           |                                                                     |                    |
| 8.0           | INTEGRATED RESOURCE MANAGEMENT                                      |                    |
| 8.1           | Cutblock Size and Adjacency                                         |                    |
| 8.2           | Visual resources                                                    |                    |
| 8.3           | Community Watersheds                                                |                    |
| 8.4           | Black Tailed Deer Winter Range                                      |                    |
| 8.5           | Ecosystem Based Management (EBM) Objectives                         |                    |
| 8.            | 2.5.1 EBM Objective 3 – First Nations Traditional Forest Resources  | 45                 |
| 8.            | E.5.2 EBM Objective 4 – First Nations Traditional Heritage Features |                    |
| 8.            | E.5.3 EBM Objective 5 – Culturally Modified Trees                   |                    |
| 8.            | E.5.4 EBM Objective 6 – Monumental Cedar                            | 46                 |
| 8.            | E.5.5 EBM Objective 7 – Stand Level Retention of Cw/Yc              |                    |
| 8.            | 8.5.6 EBM Objective 8 – Important Fisheries Watersheds              |                    |
| 8.            | 8.5.7 EBM Objective 9 – High Value Fish Habitat (HVFH)              | 47                 |
| 8.            | 8.5.8 EBM Objective 10 – Aquatic Non High Value Fish Habitat        |                    |
| 8.            | 8.5.9 EBM Objective 11– Forested Swamps                             |                    |
| 8.            | 8.5.10 EBM Objective 12 – Upland Streams                            |                    |
| 8.            | 8.5.11 EBM Objective 13 – Active Fluvial Units                      |                    |
| 8.            | 5.12 EBM Objective 14 – Landscape Level Biodiversity                |                    |
| 8.            | 5.13 EBM Objective 15 – Red and Blue Listed Plant Communities       |                    |
| 8.            | 5.14 EBM Objective 16 – Stand Level Retention                       |                    |
| 8.            | 5.15 EBM Objective 17 – Grizzly Bear Habitat                        |                    |
| 9.0           | TIMBER SUPPLY MODELING                                              | 50                 |
| 9.1           | Timber Supply Model                                                 |                    |
| 9.2           | Harvest Flow Objectives                                             |                    |
| 9.3           | Initial Harvest Rate                                                |                    |
| 9.4           | Long Run Sustained Yield                                            |                    |
| 9.5           | Sensitivities and Critical Issues                                   |                    |
| GLOS          | SSARY                                                               | 53                 |
| ACRO          | DNYMS                                                               |                    |
| DECE          |                                                                     |                    |
| KEFE          | KENCEJ                                                              |                    |
| APPE          | NDIX A: YIELD CURVES                                                | 58                 |
| APPE<br>SERIE | ENDIX B: OLD SERAL FOREST COVER REQUIREMENTS BY MINISTERIAL ORDER A | AREA/LU/SITE<br>62 |

## LIST OF TABLES

| TABLE 1. ROLES AND RESPONSIBILITIES                                                               | 2   |
|---------------------------------------------------------------------------------------------------|-----|
| TABLE 2. DATA LAYERS                                                                              | 6   |
| TABLE 3. LAND BASE AREA NETDOWN SUMMARY                                                           | 8   |
| TABLE 4. OWNERSHIP CODES AND APPLICATION IN TSR3                                                  | 10  |
| TABLE 5. NON-FOREST AND NON-PRODUCTIVE AREA                                                       | 10  |
| TABLE 6. NON-COMMERCIAL COVER                                                                     | 11  |
| TABLE 7. ACCESS FEATURE CLASSIFICATION                                                            | 11  |
| TABLE 8. PARKS AND ECOLOGICAL RESERVES IN MID COAST TSA                                           | 12  |
| TABLE 9. INOPERABLE AREAS                                                                         | 14  |
| TABLE 10. ESA NETDOWN AREAS                                                                       | 14  |
| TABLE 11. NON-MERCHANTABLE FOREST TYPES                                                           | 15  |
| TABLE 12. LOW SITE NETDOWNS                                                                       | 15  |
| TABLE 13. REDUCTIONS FOR ESTABLISHED WHA'S                                                        | 16  |
| TABLE 14. REDUCTIONS FOR MOUNTAIN GOAT                                                            | 17  |
| TABLE 15. LAND BASE REDUCTIONS FOR STREAMS                                                        | 17  |
| TABLE 16. LAND BASE REDUCTIONS FOR LAKES AND WETLANDS                                             | 18  |
| TABLE 17. RECREATION NETDOWNS                                                                     | 18  |
| TABLE 18. REDUCTIONS FOR HVFH                                                                     | 19  |
| TABLE 19. RIPARIAN RETENTION REQUIREMENTS FOR AQUATIC NON HVFH                                    | 20  |
| TABLE 20. REDUCTIONS FOR AQUATIC NONHVFH                                                          | 20  |
| TABLE 21. REDUCTIONS FOR ACTIVE FLUVIAL UNITS                                                     | 21  |
| TABLE 22. REDUCTIONS FOR GRIZZLY BEAR HABITAT                                                     |     |
| TABLE 23. TIMBER LICENCES OCCURRING IN THE MID COAST TSA                                          |     |
| TABLE 24 TIMBER LICENSE AREA SUMMARY                                                              | 24  |
| TABLE 25. ANALYSIS UNIT DESCRIPTIONS                                                              |     |
| TABLE 26 CW AND HW SITE INDEX ADJUSTMENT STATISTICS                                               | 27  |
| TABLE 27 SITE INDEX SOURCE                                                                        | 27  |
| TABLE 28. UTILIZATION LEVELS.                                                                     |     |
| TABLE 29 EXISTING TIMBER VOLUME CHECK BY AU                                                       | 29  |
| TABLE 30 EXISTING TIMBER VOLUME CHECK BY AGE CLASS                                                | 30  |
| TABLE 31 REGENERATION ASSUMPTIONS (TIPSY INPUTS) FUTURE MANAGED STANDS                            | 33  |
| TABLE 32 REGENERATION ASSUMPTIONS (TIPSY INPUTS) EXISTING MANAGED STANDS                          | 33  |
| TABLE 33 SEED PLANNING UNITS WITHIN THE MID COAST TSA (CLASS A SEED)                              | 34  |
| TABLE 34. SEED PLANNING UNITS (CLASS A SEED) GENETIC WORTH AND SEED AVAILABILITY                  | 0 1 |
| TABLE 35 NET GENETIC WORTH BY SPECIES TO BE APPLIED IN TIMBER SUPPLY MODEL                        | 35  |
| TABLE 36 MANAGED AND NATURAL STAND AREA                                                           | 35  |
| TABLE 37 MINIMUM HARVEST AGES                                                                     | 36  |
| TABLE 38 RECENT HARVEST PERFORMANCE BASED ON LICENSEE ANNUAL REPORTING SUBMISSIONS TO MER         | 38  |
| TABLE 39 NON-RECOVERABLE LOSSES                                                                   | 39  |
| TABLE 40. CALCULATION OF AREA TO BE DISTURBED ANNUALLY IN FORESTED NON-THI B BY BEC (VARIANT)/NDT | 40  |
| TABLE 41 SUMMARY OF MANAGEMENT ISSUES AND MODELLING ASSUMPTIONS                                   | 41  |
| TABLE 42 GREEN-UP REQUIREMENTS                                                                    | 42  |
| TABLE 43 MODELLING OF VISUAL MANAGEMENT                                                           | 43  |
| TABLE 44 VISUALLY FEFECTIVE GREEN-UP (VEG) HEIGHTS AND AGES BY SLOPE CLASS                        | 43  |
| TABLE 45 AREAS WITH VISUAL QUALITY OBJECTIVES                                                     | 43  |
| TABLE 46. HARVEST LIMITS APPLIED TO COMMUNITY WATERSHEDS                                          |     |
| TABLE 47. SUMMARY OF COVER CONSTRAINTS FOR BLACK TAILED DEFR BY LANDSCAPE UNIT                    |     |
| TABLE 48. AREAS IMPACTED BY BLACK TAILED DEER COVER CONSTRAINTS                                   | 44  |
| TABLE 49. MINISTERIAL ORDER AREAS FOR THE MID COAST TSA                                           |     |
| TABLE 50. AREAS IMPACTED BY IMPORTANT FISHERIES WATERSHED CONSTRAINTS                             |     |
| TABLE 51. AREAS MANAGED FOR UPLAND STREAMS                                                        |     |
| TABLE 52. LRSY VALUES FOR NATURAL AND MANAGED STANDS                                              | 51  |
|                                                                                                   |     |

## LIST OF FIGURES

| FIGURE 1. MID COAST TSA LAND BASE                                                  |    |
|------------------------------------------------------------------------------------|----|
| FIGURE 2. BEC ZONES PRESENT IN MID COAST TSA                                       |    |
| FIGURE 3. LOCATION OF MINISTERIAL ORDER BOUNDARIES (2009) WITHIN THE MID COAST TSA | 5  |
| FIGURE 4. MID COAST LAND BASE AREA SUMMARY                                         | 9  |
| FIGURE 5. MID COAST TSA LAND BASE DEFINITION MAP                                   | 9  |
| FIGURE 6. NET VOLUMES BY AU BASED ON AU CURVES OR FOREST INVENTORY DATA            | 30 |
| FIGURE 7. NET VOLUMES BY AGE CLASS BASED ON AU CURVES OR FOREST INVENTORY DATA     | 30 |

# **1.0 Introduction**

This document outlines the basic information and assumptions that are proposed for use in the provincial Timber Supply Review (TSR) process currently underway in the Mid Coast Timber Supply Area (TSA). The purpose of the review is to examine effects of current forest management practices on the short- and long-term availability of timber for harvesting in the TSA. A review of this type is intended to be completed at least once every five years in order to capture changes in data, practices, policy, or legislation influencing forest management in the TSA. The previous review (TSR2) was completed in June 1999 with a final Annual Allowable Cut (AAC) determination on June 1, 2000 establishing and AAC of 998,000 m<sup>3</sup>/yr. In July of 2002 and September 2006, the Chief Forester set out orders that decreased the AAC because of new designated areas (conservancy and biodiversity areas). The AAC has been set at 768,000 m<sup>3</sup>/yr since September 2006. The current TSR process will work towards having all work completed by Dec 31, 2009 such that a new AAC determination can be in place by June 2010.

This timber supply review will focus on a single forest management scenario that reflects <u>current management</u> <u>practices</u> in the TSA. Thus, the analysis goal is to model "what-is", and not "what-if". Current practice here will reflect the land base removals for new parks, conservancies and biodiversity areas associated with the Central Coast Land Use Decision (CCLUD) and Ecosystem Based Management (EBM) practices as described in the Ministerial Land Use Orders. In addition to this current management or "Base Case" scenario, an assessment of how results might be affected by uncertainties is completed using a number of sensitivity analyses. Together, the sensitivity analyses and the Base Case form a solid foundation for discussions among government and stakeholders about appropriate timber harvesting levels.

It is recognized that ongoing treaty negotiations with First Nations have the potential to impact timber supply in the TSA. However, "current management" is the underlying assumption for the analysis and no settlement has yet been reached. The final results from treaty negotiations will be modeled in subsequent timber supply reviews that have the benefit of legal direction in this area.

This report is the first of three documents that will be released during the TSR3 process for Mid Coast TSA. This document provides detailed technical information on the upcoming analysis. A separate document called the Analysis Report will summarize the results of the timber supply analysis and will provide a focus for public discussion. The final document will outline the Chief Forester's AAC decision and the reasoning behind it.

## 1.1 Purpose of the data package

The purpose of this data package is to:

- provide a detailed accounting of the land base, growth and yield, and management assumptions related to timber supply that the Chief Forester must consider under the *Forest Act* when determining an allowable annual cut (AAC) for the Mid Coast TSA and how these will be applied and modeled in the timber supply analysis;
- provide the evidentiary basis for the information used in the analysis.

## 1.2 Roles and Responsibilities

The Mid Coast Licensee-Agency group chose to take on the responsibility of leading the Mid Coast TSR3 process in 2008. The group consists of major licensees and First Nations with harvesting tenure in the Mid Coast TSA. To deliver on this commitment, the planning and analysis work associated with the TSR was tendered and subsequently awarded to Forsite Consultants Ltd.

Government agencies play a key role in this TSR process – they set and enforce standards and are responsible for approval of the final Data Package and Analysis Reports. The Ministry of Forests and Range (MFR) provides technical support, facilitate resolution of issues, and validate technical information. Various resource

specialists in the Ministries of Agriculture and Land (MoAL), Environment (MoE) and Tourism, Culture and Arts (MoTCA) contribute their knowledge and experience. The following table shows the general roles and responsibilities associated with the timber supply analysis leading to an AAC determination.

Table 1. Roles and responsibilities

| LICENSEE AGENCY GROUP Obligations                                                                                                                                                                                                                                                                                                               | Government Obligations                                                                                |                                                                                                                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| LICENSEE-AGENCT GROUP Obligations                                                                                                                                                                                                                                                                                                               | Forest Analysis Branch                                                                                | District And Regional Staff                                                                                                  |  |  |
| Compile data needed for the timber supply analysis,<br>including forest cover and other data related to forest and<br>land characteristics, administration and management<br>regimes. Provide a summary of the data, management<br>assumptions, and modeling methods to be applied in the<br>timber supply analysis in a Data Package document. | Set standards for the data package                                                                    | Provide data, information, and knowledge of current practices in the TSA.                                                    |  |  |
| Provide information to the public and First Nations and summarize comments received for government.                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                              |  |  |
| Make any necessary changes to the data package and submit for government approval.                                                                                                                                                                                                                                                              | Review and accept the data package (focus on how data is to be applied in Timber supply analysis).    | Review and accept the data<br>package (focus on confirming<br>current practice).                                             |  |  |
| Perform and document a timber supply analysis according to standards provided by the Ministry of Forests.                                                                                                                                                                                                                                       | Provide technical advice and set<br>standards for the analysis and<br>reporting.                      |                                                                                                                              |  |  |
| Submit an Analysis Report and digital file containing the complete dataset used in the timber supply analysis.                                                                                                                                                                                                                                  | Review and accept (together with the chief forester) the analysis report.                             | Review the analysis report to<br>ensure local issues and current<br>practices are adequately reflected.                      |  |  |
| Provide information to the public and First Nations and summarize comments received for government.                                                                                                                                                                                                                                             |                                                                                                       | Formal consultation obligations.                                                                                             |  |  |
| Provide additional information as required by the chief forester.                                                                                                                                                                                                                                                                               | Compile and prepare information for presentation to the chief forester at the determination meetings. | Assist in compiling and preparing<br>information for presentation to the<br>chief forester at the determination<br>meetings. |  |  |

## 1.3 Description of the Land base

The Mid Coast TSA is located on the central coast of British Columbia and covers approximately 2.2 million ha. The Mid Coast TSA extends from Cape Caution in the south to Sheep Passage in the north and is bordered by the Pacific Ocean to the west and Tweedsmuir Park to the East (Figure 1). The northern boundary is made up of Tree Farm License (TFL) 25, the Fiordland Recreation Area, and the Kitlope Heritage Conservancy Protected Area.

The terrain is rugged and variable including low lying islands, outlying coastal mainland areas, inland mountainous regions, high elevation non-forested areas, and productive valley bottom steep sided inlets. The forests of the Mid Coast are dominated by four main biogeoclimatic zones as illustrated in Figure 2 below and include Coastal Western Hemlock (CWH), Mountain Hemlock (MH), Engelmann Spruce Subalpine Fir (ESSF), and alpine (CMA). Other zones such as IDF, MS, SBPS, and SBS exist in the transition zone to the interior ecosystems that is contained entirely within Tweedsmuir Park.

The Mid Coast TSA exhibits high levels of diversity in landscape, wildlife, and culture. Diverse populations of both marine and terrestrial wildlife exist in the TSA. The TSA's forests are culturally rich and diversified as well. Archaeological work has yielded evidence of some of the oldest First Nation's habitations on the BC coast.

The Mid Coast TSA is remote and sparsely populated, with the majority of the population living in the Bella Coola valley. Other populated areas include small isolated communities along the outer coast.



Figure 1. Mid Coast TSA land base



Figure 2. BEC Zones present in Mid Coast TSA

## **1.4 History of the Annual Allowable Cut**

The history of the Annual Allowable Cut (AAC) for the Mid Coast TSA is summarized below.

- During the mid 1970's to the early 1990's the AAC on the Mid Coast was periodically increased to meet elevating demand for access to timber and improved harvesting practices that allowed utilization of poor forest types. In 1992 the AAC was 1,516,600 m<sup>3</sup>/yr.
- Effective January 1992 the AAC was reduced by 39 % as poorer quality stands were not being harvested to the extent previously expected, which left the AAC at 1,000,000 m<sup>3</sup>/yr. Also a partition was introduced that required 130,000 m<sup>3</sup>/yr of the AAC come from stands of a height class three (trees over 120 years of age and less than 28.5 m in height).
- From 1992-1995 the AAC remained unchanged however the partition requirement was modified to include height class three stands on the outer coast, decadent hemlock-balsam stands outside the operability line, and stands that are accessible by helicopter outside operability lines.
- In June 2000 the AAC for the Mid Coast was determined to be 998 000 m<sup>3</sup>/yr. The reduction was to account for a newly issued probationary community forest agreements (PCFA). Within the 2000 AAC existed a partition of 200,000 m<sup>3</sup>/yr requiring harvesting to occur in poor or low site hemlock / balsam leading stands (site index ≤17m). The Chief Forester also stated that at least 59,000 m<sup>3</sup>/yr should come from the outer coast and 178,000 m<sup>3</sup>/yr should come from outside the conventional operability lines. These are not formal partitions but expectations that will be evaluated in the next TSR when defining the new timber harvesting land base.
- In July of 2002 the chief forester issued an order decreasing the AAC by 203,000 m<sup>3</sup>/yr to account for establishment of the Central Coast Designated Area. This volume was removed from both the partition and the overall total volume and remained unchanged until the Designated Area section in the Forest Act expired in January 2006.
- In September of 2006 a new Designated Area section was established in the Forest Act and the Chief Forester reinstated the order that decreased the AAC to the current level of 768,000 m<sup>3</sup>/yr.

## 1.5 Current Practice and EBM

Within the general TSR process, current management practices are primarily defined by:

- Legislation (e.g. Forest and Range Practices Act and its Regulations)
- Ministerial Orders (e.g. South Central Coast Order, Central Coast Designated Areas),
- Government Actions Regulation Orders (e.g. Karst, WHA's, Visuals),
- Current management practices described in Forest Stewardship Plans,
- Other approved BC Forest Service and joint agency forest management practices and policy,
- Current practices of forest tenure holders.

As a result of the Central Coast Land Use decision and the establishment of the South Central Coast Order (Aug 2, 2007) and the Central and North Coast Order (Jan 3, 2008), land use objectives implementing Ecosystem Base Management (EBM) were put in place for the whole of the Mid Coast TSA (Figure 3). Draft amendments to these orders were made public in December 2008 and available for review and comment until Feb 16, 2009. They were then made legal in March 2009. These legal objectives now direct forest practices implemented under the Forest and Range Practices Act. Thus, current practice for Mid Coast TSR3 includes both FRPA and the amended EBM management guidelines. The elements of EBM are discussed in detail throughout this document.

The EBM orders and background data/interpretation information can be found here: <a href="http://ilmbwww.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/index.html">http://ilmbwww.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/index.html</a>



Figure 3. Location of Ministerial Order Boundaries (2009) within the Mid Coast TSA

A list of the EBM elements included in the orders is provided below. These elements are discussed in detail later in the document (see referenced section numbers).

First Nations Elements

- Objective 3: First Nations' traditional forest resources (Section 3.4.1);
- Objective 4: First Nations' traditional heritage features (Section 3.4.1);
- Objective 5: Culturally modified trees (Section 3.4.1);
- Objective 6: Monumental cedar (Section 3.4.1);
- Objective 7: Stand-level retention of Western red and Yellow Cedar (Section 3.4.1);

Aquatic Habitats

- Objective 8: Important fisheries watersheds (Section 8.5.6);
- Objective 9: High value fish habitat (Section 3.3.12.1);
- Objective 10: Aquatic habitat that is not high value fish habitat (Section 3.3.12.2);
- Objective 11: Forested swamps (Section 8.5.9);
- Objective 12: Upland streams (Section 8.5.10);
- Objective 13: Active fluvial units (Section 3.3.12.4);

#### Biodiversity

- Objective 14: Landscape-level biodiversity (Section 8.5.12);
- Objective 15: Red-listed and blue-listed plant communities (Section 3.4.2);
- Objective 16: Stand-level retention (Section 3.4.3); and
- Objective 17: Grizzly bear habitat (Section 8.5.15).

# 2.0 Thematic Data

## 2.1 Data Sources

Many different data layers were compiled to provide input into the timber supply analyses described in this report and they are documented in Table 2. The use of these data layers is described in subsequent sections of this appendix.

#### Table 2. Data layers

| Data Description                       | Forsite<br>Coverage<br>Name | Data<br>Source | Description                                                                                                                                                                                                                                                           | Vintage  |
|----------------------------------------|-----------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Administrative Line Wor                | k                           |                |                                                                                                                                                                                                                                                                       |          |
| TSA Boundary                           | TSABDY                      | LRDW           | Outer boundary of the TSA.                                                                                                                                                                                                                                            | 2003     |
| Landscape Units/BEO                    | LU                          | ILMB           | Legal LU boundaries from LRDW. (identical to LU's in EBM orders)                                                                                                                                                                                                      | 2000     |
| Ownership                              | Owner2008                   | Forsite        | Forsite created using data from LRDW (parks, CFA's, TFL's). TSR2<br>ownership file (IR's, TL's, Private, UREP, Misc Resv), and ILMB<br>Nanaimo conservancy data. Edits made to TL's.                                                                                  | 2008     |
| Ministerial Order<br>Boundaries        | Order_bdy                   | ILMB           | ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm_data. Landscape<br>units were dissolved to make up the order boundaries.                                                                                                                                           | 2009     |
| Inventories                            |                             |                |                                                                                                                                                                                                                                                                       |          |
| BEC                                    | Abec_bc_v7                  | LRDW           | Biogeoclimatic units with NDT added based on BEC Web definitions                                                                                                                                                                                                      | 2008     |
| DEM for slope classes                  | Slope_mc                    | TRIM           | Elevation data points used to generate slope classes.                                                                                                                                                                                                                 |          |
| Depletions                             | Blks_Mar08                  | Forsite        | Forsite compiled using block data from licensees, results, FTA                                                                                                                                                                                                        | 2008     |
| Vegetation                             | Veg                         | LRDW           | Projected to Jan 1, 2008. Site series surrogate values added.                                                                                                                                                                                                         | 2008     |
| ESA                                    | ESA                         | TSR2           | ILMB Nanaimo. TSR2 ESA were added to the current Veg file.                                                                                                                                                                                                            | Pre 1996 |
| Inner/Outer Coast                      | Partition                   | TSR2           | ILMB Naniamo.                                                                                                                                                                                                                                                         | 1999     |
| Operability                            | Oper09                      | Forsite        | Developed by Forsite using economic operability modeling. Updated to include ESA areas in July 2009                                                                                                                                                                   | 2009     |
| Registered<br>Heritage/ARCH            | MC_ArchSites                | Arch<br>Branch | Polygon data indicating legally protected archeological sites - provided by John McMurdo.                                                                                                                                                                             | 2008     |
| Roads                                  | Roads08                     | Forsite        | Forsite developed using licensee data, FTEN, TRIM, Timberline<br>Woodshed project roads. Includes both existing and proposed rds.                                                                                                                                     | 2008     |
| Karst                                  | Karst                       | LRDW           | Gives Karst likelihood and Karst development                                                                                                                                                                                                                          | 2003     |
| EBM                                    |                             |                |                                                                                                                                                                                                                                                                       |          |
| Active Fluvial Units                   | Flood08                     | Forsite        | Created using CC_flood cover from LRMP + added TRIM floodplains around Bella Coola - then removed coniferous stands >200 yrs.                                                                                                                                         | 2008     |
| Grizzly Bear Habitat                   | griz_09dis                  | ILBM           | <u>ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm_data/</u><br>grizzly_bear_nc and grizzly_scc                                                                                                                                                                    | 2009     |
| High Value Fish<br>Habitat (HVFH)      | HVFH                        | Forsite        | 20,000 scale streams with a gradient of <=5% fall on terrain with <=5% slope.                                                                                                                                                                                         | 2008     |
| Kimsquit River HVFH                    | Kimsquit                    | ILBM           | <u>ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm_data/</u><br>Kimsquit_River_cnc                                                                                                                                                                                 | 2009     |
| Aquatic Non High<br>Value Fish Habitat | AQ_NHVFH                    | Forsite        | 20,000 scale streams classified into S1-S6 – then any S1-S3 streams not called HVFH. Lake and wetlands from TRIM.                                                                                                                                                     | 2008     |
| Important Fisheries<br>Watersheds      | fsw_3rd_2009                | ILMB           | <u>ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm_data/</u> Forsite<br>compiled 4 separate IFW datasets provided by ILMB Nanimo – two<br>original EBM order datasets plus additional watersheds coming from the<br>amended order (NCMO_IFW_7FN and ISW_FN_Final). | 2009     |
| Site Series Surrogates                 | n/a                         | ILMB           | Assigned to veg file using leading species and site index groups.                                                                                                                                                                                                     | 2008     |
| Other Watersheds (Upland Streams)      | fsw_3rd_2009                | ILMB           | 3 <sup>rd</sup> order watersheds. ftp://ftpnan.env.gov.bc.ca/pub/outgoing/dist/<br>Coast%20Implementation/EBM%20WG/Data/watersheds/ These<br>watersheds were used to fill in around the IFW's.                                                                        | 2007     |
| Management Guidance                    |                             |                |                                                                                                                                                                                                                                                                       |          |
| Recreation Inventory                   | Rec_Inv                     | LRDW           | Inventory describing the significance and sensitivity of the land base from a recreation perspective.                                                                                                                                                                 | 2006     |
| VQO's                                  | VQOs                        | MFR            | http://www.for.gov.bc.ca/dni/gar/GAR.htm. VAC attribute added from dataset off of the LRDW.                                                                                                                                                                           | 2005     |

| Data Description         | Forsite<br>Coverage<br>Name | Data<br>Source | Description                                                                                                                          | Vintage |
|--------------------------|-----------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|
| Streams (Classified)     | Streams                     | Forsite        | 20,000 scale streams (corporate watershed base) classified into S1-S6 using stream gradient and stream order/magnitude.              | 2008    |
| Lakes Classified         | Lakes                       | Forsite        | 20,000 scale lakes and wetlands (corporate watershed base) classified in to L1-L5 / W1-W5 based on size and proximity to each other. | 2008    |
| Community<br>Watersheds  | CWSs                        | LRDW           | Legal Community Watersheds                                                                                                           | 2008    |
| Ungulate Winter<br>Range | UWR                         | LRDW           | Deer and Mtn Goat winter range habitat areas.<br>http://www.env.gov.bc.ca/wld/frpa/uwr/approved_uwr.html                             | 2007    |
| Wildlife Habitat Areas   | WHAs                        | LRDW           | Legally established WHA's (Grizzly only)                                                                                             | 2007    |

## 2.2 Forest Cover Inventory

The forest cover inventory is a key component to the timber supply review of the TSA. The history of the current forest cover inventory in the Mid Coast TSA can be summarized briefly as follows:

- The inventory data was originally prepared in 1988-1990 from 1977-79 photography and is currently in a Vegetation Resources Inventory (VRI) Forest inventory Planning (FIP) Rollover format. There are several mapsheets of full VRI format data in the NE corner of the TSA (portion of Tweedmuir park).
- A single flat file was obtained from Forest Analysis and Inventory Branch (James Wang) that included only Rank 1 stand information. Attributes were projected to January 1, 2008 using VDYP 6.
- Disturbances from harvesting and fire will be updated in the GIS resultant to March 2008 using data compiled from licensees and RESULTS. Fires from 2001-2007 were provided by the MFR FAIB.
- An inventory audit was carried out in 1994 (published 1995) and indicated that the inventory was statistically reliable for some strategic planning purposes at a broad management unit level.
- No ground sampling (Phase 2 work) has been completed to support adjustments to inventory attributes so no adjustments have been applied.
- Site index adjustments have been developed for regenerating managed stands (Timberline's 2008 SIA project<sup>1</sup>) and were used to develop managed stand yield curves. Existing inventory site indices were used for natural (unmanaged) stand yield curves.

It should be noted that planners and practitioners using the forest inventory at a sub-unit or polygon level have found the attributes quite unreliable.<sup>2</sup> The extra demands of EBM (e.g. Site Series Surrogate status reporting) emphasizes the need for more dependable information. To that end a multi year, multi million dollar project to create a new VRI inventory to replace the current forest cover information was initiated in 2008 but will not be completed in time for inclusion in this analysis. In lieu of access to any better forest information the FIP-based data is employed in this TSR.

# 3.0 Timber Harvesting Land Base

## 3.1 Land Base Definitions

The Productive Forest Land Base (PFLB) is the area of productive forest under crown ownership. This is the land base that contributes to landscape level objectives for biodiversity and non timber resource management. The PFLB excludes non-crown land, probationary community forest agreements (PCFA), non-forest and non-productive areas.

<sup>&</sup>lt;sup>1</sup> Site Index Adjustment Of The Mid Coast Timber Supply Area (Project # BC0108405), January 2009, Timberline Natural Resource Consultants, Victoria, BC

<sup>&</sup>lt;sup>2</sup> Central Coast LRMP Area Vegetation Resources Inventory Strategic Inventory Plan, February 2008. pg 7

The Timber Harvesting Land Base (THLB) is the portion of the management unit where forest licensees under license to the province of BC are expected to harvest timber. The THLB excludes areas that are inoperable or uneconomic for timber harvesting, or are otherwise off-limits to timber harvesting. Operationally, harvesting activity does occur in areas outside the modeled THLB. The THLB is a subset of the PFLB. For modeling purposes, the THLB must be approximated in a GIS format and is described in detail below. Table 3 and Figure 4 / Figure 5 summarize the land base planned for use in the base case harvest forecast.

|                                                        |                   | Base Case  |        |       |
|--------------------------------------------------------|-------------------|------------|--------|-------|
| Land Base Element                                      | <b>Total Area</b> | Effective* | %      | %     |
|                                                        | (ha)              | Area (ha)  | Total  | PFLB  |
| Total area (Mid Coast TSA Bdy – less ocean)            | 2,994,120         | 2,994,120  |        |       |
| Less:                                                  |                   |            |        |       |
| Private Land, Indian Reserves                          | 14,365            | 14,365     |        |       |
| TFL's, CFA's, PCFA's, Misc Leases, Etc                 | 263,393           | 263,393    |        |       |
| Timber License's (unreverted)                          | 5,279             | 5,279      |        |       |
| Total TSA Area                                         | 2,711,083         | 2,711,083  | 100.0% |       |
| Non forest / Non-productive forest                     | 1,681,250         | 1,681,250  | 61.6%  |       |
| Non-Commercial Brush                                   | 480               | 480        | 0.4%   |       |
| Existing Roads, Trails and Landings                    | 4,937             | 3,521      | 0.1%   |       |
| Total Productive Forest Land Base <sup>**</sup> (PFLB) | 1,024,416         | 1,025,831  | 37.8%  | 100%  |
| Less:                                                  |                   |            |        |       |
| Parks and Ecological Reserves                          | 495,133           | 495,133    | 18.3%  | 48.3% |
| Inoperable/Inaccessible                                | 819,219           | 327,229    | 12.1%  | 31.9% |
| Environmentally Sensitive Areas (ESA's)                | 261,632           | 28,977     | 1.1%   | 2.8%  |
| Non-Merchantable or Problem Forest Types               | 196,865           | 33         | 0.0%   | 0.0%  |
| Low Productivity Sites                                 | 177,662           | 17,819     | 0.7%   | 1.7%  |
| Grizzly Wildlife Habitat Areas (WHA's)                 | 13,661            | 3,755      | 0.1%   | 0.4%  |
| Mountain Goat Winter Range                             | 29,985            | 65         | 0.0%   | 0.0%  |
| FRPA Riparian (not including S6's)                     | 17,433            | 6,240      | 0.2%   | 0.6%  |
| Recreation Values                                      | 10,470            | 3,466      | 0.1%   | 0.3%  |
| EBM – High Valve Fish Habitat (Obj. 9)                 | 5,782             | 1,603      | 0.1%   | 0.2%  |
| EBM – Non High Value Aquatic Habitat (Obj. 10)         | 6,630             | 2,094      | 0.1%   | 0.2%  |
| EBM – HVFH Kimsquit River (Obj. 9)                     | 5,693             | 1,150      | 0.0%   | 0.1%  |
| EBM – Active Fluvial Units (Obj. 13)                   | 1,133             | 264        | 0.0%   | 0.0%  |
| EBM – Grizzly Bear Habitat (Obj. 17)                   | 42,420            | 2,662      | 0.1%   | 0.3%  |
| Spatial Timber Harvesting Land Base (ha)               |                   | 135,343    | 5.0%   | 13.2% |
| Non Spatial Netdowns Applied to Each THLB Polygon:     |                   |            | 0      |       |
| FRPA Riparian – S6's = 0.3%                            |                   | 406        | 0.0%   | 0.0%  |
| EBM – Arch/FN (Obj. 4-7) = 1.3%                        |                   | 1,759      | 0.1%   | 0.2%  |
| EBM – Red and Blue (Obj. 15) = 3.0%                    |                   | 4,060      | 0.1%   | 0.4%  |
| EBM – Stand Level Retention (Obj. 16) = 4.4%           |                   | 5,955      | 0.2%   | 0.6%  |
| Effective Timber Harvesting Land Base (ha)             |                   | 123,162    | 4.5%   | 12.0% |
| Future Reductions:                                     |                   |            |        |       |
| Future roads, trails and landings                      |                   | -2,713     | 0.1%   | 0.3%  |
| Future Gains:                                          |                   |            |        |       |
| TL Reversions                                          |                   | +5,279     | 0.2%   | 0.5%  |
| Long Term Timber Harvesting Land Base (ha)             |                   | 125,728    | 4.6%   | 12.3% |

\* Effective netdown area represents the area that was actually removed as a result of a given factor. Removals are applied in the order shown above, thus areas removed lower on the list do not contain areas that overlap with factors that occur higher on the list. For example, the parks netdown does not include any non forested area. \*\* Productive forest in this context denotes the forest area that contributes to forest management objectives, such as landscape-level biodiversity, wildlife habitat and visual quality. It does

not include alpine forest or Non productive areas with tree species.



Mid Coast TSA (less ocean)

Figure 4. Mid Coast Land Base Area Summary

Productive Forest Land Base



Figure 5. Mid Coast TSA Land Base Definition Map

## 3.2 Exclusions from the Productive Forest Land Base (Spatial)

#### 3.2.1 Ownership classes not part of the TSA

The area of the Mid Coast Timber Supply Area is divided into ownership classes that describe the nature of ownership of a particular parcel of land. For forest management in the Mid Coast TSA, only those lands that are under provincial crown ownership will contribute to forest management objectives, like landscape level biodiversity.

Table 4 describes the various ownership codes in the Mid Coast TSA, and their contribution to the Productive Forest Land Base, the Timber Harvesting Land base, or both. Parks and protected areas are described in more detail in section 3.3.1.

Table 4. Ownership codes and application in TSR3

| Ownership Code Description                     | Percent<br>Contribution<br>to PFLB | Percent<br>Contribution<br>to THLB | Total<br>area (ha) | Effective<br>Netdown<br>Area (ha) |
|------------------------------------------------|------------------------------------|------------------------------------|--------------------|-----------------------------------|
| Community Forest Agreement (CFA)               | 0%                                 | 0%                                 | 169,160            | 169,160                           |
| Indian Reserve                                 | 0%                                 | 0%                                 | 5,059              | 5,059                             |
| Miscellaneous Reserve                          | 0%                                 | 0%                                 | 1,434              | 1,434                             |
| Private                                        | 0%                                 | 0%                                 | 9,305              | 9,305                             |
| Tree Farm License (TFL)                        | 0%                                 | 0%                                 | 86,280             | 86,280                            |
| Timber License's reverting to CFA (TL/CFA)     | 0%                                 | 0%                                 | 6,451              | 6,451                             |
| Use, recreation enjoyment of the public (UREP) | 0%                                 | 0%                                 | 68                 | 68                                |
| Total                                          |                                    |                                    | 277,758            | 277,757                           |

Note: More detail is provided on park areas in Table 8.

#### 3.2.2 Non-forest, non-productive and non-typed

All land classified as non-forest, non-productive (lakes, swamps, rock, alpine, *etc*.), or non-typed in the forest cover files were excluded from the timber harvesting land base. The non-forest and non-productive areas used in the netdown process are listed in Table 5.

| Description          | Percent<br>Reduction | Total area<br>(ha) | Effective Netdown<br>Area (ha) |
|----------------------|----------------------|--------------------|--------------------------------|
| Alpine               | 100%                 | 1,074,702          | 1,074,702                      |
| Alpine forest        | 100%                 | 294,099            | 294,099                        |
| Clearing             | 100%                 | 88                 | 88                             |
| Clay bank            | 100%                 | 341                | 341                            |
| Gravel bar           | 100%                 | 403                | 403                            |
| Gravel pit           | 100%                 | 4                  | 4                              |
| Lake                 | 100%                 | 72,964             | 72,964                         |
| Meadow               | 100%                 | 52                 | 52                             |
| Mud flat             | 100%                 | 185                | 185                            |
| Non-productive       | 100%                 | 167,372            | 167,372                        |
| Non-productive brush | 100%                 | 11,298             | 11,298                         |
| Non-productive burn  | 100%                 | 1,663              | 1,663                          |
| No typing available  | 100%                 | 35,464             | 35,464                         |
| Open range           | 100%                 | 1                  | 1                              |
| Rock                 | 100%                 | 6,085              | 6,085                          |
| River                | 100%                 | 8,482              | 8,482                          |
| Swamp (muskeg)       | 100%                 | 7,503              | 7,503                          |
| Tidal flat           | 100%                 | 138                | 138                            |
| Urban                | 100%                 | 405                | 405                            |
| Total                | •                    | 1,681,250          | 1,681,250                      |

#### 3.2.3 Non-commercial cover

Non-commercial cover is productive forest land that is otherwise occupied by non-commercial tree or shrub species. This area of land does not currently grow commercial tree species, and is not expected to do so without intervention. This area was therefore excluded from the Productive Forest Land Base.

Table 6. Non-commercial cover

| Description                         | Percent<br>Reduction | Total area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|-------------------------------------|----------------------|--------------------|-----------------------------------|
| Non-Commercial (NF Desc=NCBr or NC) | 100%                 | 480                | 480                               |

#### 3.2.4 Roads, trails, and landings

Quantifying the area that is, and will be, disturbed by roads, trails, landings (RTLs) and other access features in the TSA is an important part of determining the THLB. Areas that were expected to remain non-productive were removed from the working land base as outlined below.

#### 3.2.4.1 Existing classified roads

Classified roads are those roads identified in the forest cover inventory. These roads are frequently large roads or highways with a wide right-of-way and are netted out in Table 5.

#### 3.2.4.2 Existing unclassified roads, trails, and landings

Roads not represented in the forest cover data are considered unclassified. Roads and trails are tracked as line features in separate road files. A consolidated dataset was compiled by Forsite in August 2008 using data from licensees, TRIM, MFR tenures, and a woodshed analysis project completed by Timberline in 2000. Roads were flagged as either existing or proposed with a road type of either mainline or spur. The widths associated with these road features were estimated by members of the Mid Coast TSR technical committee and applied as buffers to the existing roads (Table 7). These areas were assumed to include landings, pullouts, and unmapped trails – and were removed spatially from the timber harvesting land base.

| Table 7. | Access feature | classification |
|----------|----------------|----------------|
|          |                | 0.0.00000      |

| Road Type | Unproductive Road<br>Width (m) | Total Area (ha) | Effective Netdown<br>Area (ha) |
|-----------|--------------------------------|-----------------|--------------------------------|
| Main      | 15 m                           | 4 037           | 3 521                          |
| Spur      | 11 m                           | 4,937           | 5,521                          |

Note: Overlap between these features and non-forested areas exist but no double counting occurred during netdowns.

#### 3.2.4.3 Future roads, trails and landings

Deductions for future roads are necessary to account for the unproductive area created as new roads, trails and landings are built. The first time conventional logging occurs in an unroaded area of the TSA, all of the timber volume in that stand is captured. Any subsequent entries will harvest less volume, recognizing that there is now an unproductive area that would exist as roads, trails and landings.

FRPA limits the impact of permanent access structures to 7.0% and this value is consistent with commitments made in licensee Forest Stewardship Plans. For the purpose of this analysis, the 7% impact associated with future permanent access structures will be applied to the following area:

- Unlogged THLB (natural stand AU's), that are
- >250 meters from existing roads, and
- planned for conventional logging systems (not helicopter logging).

It is assumed that the area within 250 m can currently be accessed from the existing roads and all previously logged areas will not need the netdown applied.

Deductions for future roads, trails and landings were applied as a volume reduction to the yield tables of all future managed stand analysis units. The THLB area meeting the criteria described above (38,755 ha) was multiplied by 7.0% to get an effective area reduction (**2,713 ha**). This area was then calculated as percentage of the total area on the future managed stand yield curves (106,283 ha) and implemented as a volume reduction (**2.5**%) on these curves.

## 3.3 Exclusions from the Timber Harvesting Land Base

#### 3.3.1 Parks and Protected Areas

Provincial parks and other protected areas in the Mid Coast TSA are excluded from the THLB but can contribute to non-timber objectives, meaning that they remain in the productive forest land base (PFLB) Table 8 summarizes the existing parks, protected areas, and conservancies in the TSA.

| Table 8. Parks and Ecological Reserves | s in | Mid | Coast | TSA |
|----------------------------------------|------|-----|-------|-----|
|----------------------------------------|------|-----|-------|-----|

| Date of<br>Establishment | Conservancy or BMTA Name                     | Productive<br>Forest Area<br>(ha) | Effective<br>Netdown<br>Area (ha) |
|--------------------------|----------------------------------------------|-----------------------------------|-----------------------------------|
|                          | Codville Lagoon Marine Park                  | 384                               | 384                               |
| Before June 1,           | Entiako Park                                 | 2                                 | 2                                 |
| 2000                     | Hakai Conservation Study Area                | 11,281                            | 11,281                            |
|                          | Huchsduwachsdu Nuyem Jees / Kitlope Heritage | 2                                 | 2                                 |
|                          | Conservancy<br>Benrade Jaland Bark           | 000                               | 000                               |
|                          | Sir Alexander Mackenzie Park                 | 922                               | 922                               |
|                          | Tweedsmuir Park (North)                      | 148                               | 148                               |
|                          | Tweedsmuir Park (South)                      | 264 232                           | 264 232                           |
|                          | Calvert Island Conservancy                   | 11,695                            | 11.695                            |
| Bill28 -                 | Fiordland Conservancy                        | 11,192                            | 11,192                            |
| 03/05/2006               | Kitasoo Spirit Bear Conservancy              | 2.569                             | 2.569                             |
|                          | Koeye Conservancy                            | 15                                | 15                                |
|                          | Tsa-latl/Smokehouse Conservancy              | 13,114                            | 13,114                            |
|                          | Cape Caution-Blunden Bay Conservancy         | 9                                 | 9                                 |
| Bill24 -                 | Carter Bay Conservancy                       | 292                               | 292                               |
| 03/05/2007               | Clyak Estuary Conservancy                    | 166                               | 166                               |
|                          | Cranstown Point Conservancy                  | 77                                | 77                                |
|                          | Goose Bay Conservancy                        | 937                               | 937                               |
|                          | Kilbella Estuary Conservancy                 | 81                                | 81                                |
|                          | Lady Douglas - Don Peninsula Conservancy     | 1,910                             | 1,910                             |
|                          | Lockhart - Gordon Conservancy                | 14,970                            | 14,970                            |
|                          | Machmell Conservancy                         | 1,364                             | 1,364                             |
|                          | Nekite Estuary Conservancy                   | 256                               | 256                               |
|                          | Outer Central Coast Islands Conservancy      | 5,796                             | 5,796                             |
|                          | Owikeno Conservancy                          | 22,301                            | 22,301                            |
|                          | Penrose-Ripon Conservancy                    | 2,153                             | 2,153                             |
|                          | Sheemahant Conservancy                       | 610                               | 610                               |
|                          | Ugwiwey/Cape Caution Conservancy             | 3,480                             | 3,480                             |
|                          | Bella Coola Conservancy                      | 4                                 | 4                                 |
| Bill38/r437              | Burnt Bridge Creek Conservancy               | 598                               | 598                               |
| 26/06/2008               | Cascade-Sutslem Conservancy                  | 19,387                            | 19,387                            |
|                          | Clayton Falls Conservancy                    | 650                               | 650                               |
|                          | Codville Extension Conservancy               | 764                               | 764                               |
|                          | Dean River Conservancy                       | 17,514                            | 17,514                            |
|                          | Dean River Corridor Conservancy              | 2,700                             | 2,700                             |
|                          | Ellerslie-Roscoe Conservancy                 | 10,867                            | 10,867                            |
|                          | Ellerslie-Roscoe Conservancy (Roscoa)        | 12,957                            | 12,957                            |

| Date of<br>Establishment | Conservancy or BMTA Name                | Productive<br>Forest Area<br>(ha) | Effective<br>Netdown<br>Area (ha) |
|--------------------------|-----------------------------------------|-----------------------------------|-----------------------------------|
| (cont.)                  | Hot Springs - No Name Creek Conservancy | 3,438                             | 3,438                             |
|                          | Jump Across Conservancy                 | 7,255                             | 7,255                             |
| Bill38/r437              | Kimsquit Estuary Conservancy            | 531                               | 531                               |
| 26/06/2008               | Kwatna Estuary Conservancy              | 81                                | 81                                |
|                          | Nooseseck Conservancy                   | 25                                | 25                                |
|                          | Namu Conservancy                        | 27                                | 27                                |
|                          | Restoration Bay Conservancy             | 776                               | 776                               |
|                          | Thorsen Creek Conservancy               | 2,512                             | 2,512                             |
|                          | Troup Passage Conservancy               | 1,512                             | 1,512                             |
|                          | Upper Kimsquit River Conservancy        | 1,989                             | 1,989                             |
|                          | Ape Lake                                | 757                               | 757                               |
| BMTAs                    | Barer Creek                             | 1,110                             | 1,110                             |
| OIC 002-2009             | Bentinck Estuaries                      | 35                                | 35                                |
| 01/09/09                 | Fish Egg                                | 11,460                            | 11,460                            |
|                          | Inland Cape Caution                     | 9,302                             | 9,302                             |
|                          | King                                    | 11,710                            | 11,710                            |
|                          | Kunsoot River                           | 979                               | 979                               |
|                          | Nekite Estuary West                     | 196                               | 196                               |
|                          | South Bentinck                          | 6,033                             | 6,033                             |
|                          | Total                                   | 495,133                           | 495,133                           |

#### 3.3.2 Inoperable or Inaccessible Areas

Inoperable areas are areas that are not available for timber harvesting because they are not economically viable to access and harvest. In response to concerns expressed by the Chief Foresters in his TSR2 rationale, a new operability study was conducted as part of this TSR (*Economic Operability Assessment for the Mid Coast TSA*, Forsite, March 2009). The study used the following general approach:

- A road network was developed to show the extent of potential access throughout the TSA, and included both existing and planned/potential roads. This road dataset is a coarse approximation of what is likely to occur in the future and was used to assign harvest systems. Areas within 250 m of roads were considered conventional harvest, while areas beyond that but limited to 2km away were considered helicopter harvest. Helicopter harvest was also designated up to 2km from potential water drop locations. Areas without a harvest system were immediately considered inoperable (20,080 ha). Those with a harvest system were assessed for economic viability.
- Stands with no potential for harvest in the future were removed from eligibility (Non TSA ownership, parks/designated areas, very low productivity sites, highly environmentally sensitive areas, major riparian areas / floodplains, mountain goat habitat areas, important grizzly habitat areas, etc). An economic subset of these areas was ultimately put back into the operable land base so that TSR netdowns and sensitivities could explore the impacts of these factors.
- Costs were assigned to each stand for planning, logging, barging, scaling, and silviculture using costs provided by licensees and the coastal appraisal manual. See the full project report for more detail.
- Values were assigned to each stand using 10 year average market prices for each species and grade. Grade distributions were determined using historical TSA scaling data for each species and then these species specific grade distributions were applied to each stand in the forest inventory.
- A net value (before road costs) was determined for each stand, and then these values and a full road network (existing and proposed) was fed into a model (Patchworks) to allocate harvesting and road use across the land base for 200 years. Road use triggered any required building costs, maintenance costs, and hauling costs associated with harvesting a specific set of stands. The sum of the stand net values less road related costs in each period provided average net revenue in each period.

- The modeling objective was to find the largest possible land base that could generate a reasonable economic return to the crown over time. Cut block blending or the ability to harvest positive and negative value blocks within each period was allowed as long as the net return after all costs were considered was \$6.33/m<sup>3</sup> in every 5 year period. The \$6.33/m<sup>3</sup> target is based on the average stumpage paid in the TSA over the last 10 years (\$9.08/m<sup>3</sup> not including BCTS) less the current EBM allowance of \$2.75/m<sup>3</sup>. This financial objective limited the amount of negative value stands harvested in each period to a reasonable level.
- Any stands harvested by the model during the 200 years planning horizon were considered to be operable. Previously logged blocks in the TSA were considered operable only when they were logged by the model. This left over 10,499 ha of previously logged stands outside of the operability land base.

The size of the area considered inoperable is shown in Table 9. For more detail on how the operable area was developed, refer to the full report cited above.

Table 9. Inoperable areas

| Description | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |  |
|-------------|----------------------|-------------------|-----------------------------------|--|
| Inoperable  | 100%                 | 819,219           | 327,229                           |  |

The Ministry of Forestry District has indicated some concerns about the operability in the back of the Owikeno Watershed but licensees still see opportunities in the area. This area will be modeled with no restrictions but its contribution to the base case flow will be reported out and a sensitivity analysis will be preformed.

#### 3.3.3 ESAs and Unstable Terrain

Environmentally sensitive sites and areas of significant value for other resource uses have been delineated within the forest cover inventory as Environmentally Sensitive Areas (ESA's). ESA's are broad classifications that indicate sensitivity for unstable soils (E1s), forest regeneration problems (E1p), snow avalanche risk (E1a), and high water values (E1h). Where terrain stability mapping is available, it is often used in place of ESA soils designations, but there was none available for use in this analysis. Table 10 summarizes the netdown areas attributed to ESA's. Environmentally sensitive area reductions were established by MFR for the 1999 timber supply analysis. The percentages reflect sites sensitivity to forest management, value for other resources, and current management practices.

| ESA Type | Description                              | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|----------|------------------------------------------|----------------------|-------------------|-----------------------------------|
| ESA1 a   | High Avalanche Sensitivity               | 100%                 | 4,397             | 592                               |
| ESA1 p   | High Regeneration Sensitivity            | 100%                 | 101,771           | 6,562                             |
| ESA1 s   | High Soil Sensitivity / Unstable Terrain | 90%                  | 139,556           | 18,450                            |
| ESA2 s   | Mod Soil Sensitivity / Unstable Terrain  | 40%                  | 15,454            | 3,372                             |
| Total    |                                          |                      | 261,177           | 28,977                            |

Table 10. ESA netdown areas

Note: The total productive area of ESA1 soils (TSA forested land) was 155,062 ha and the total for ESA2 soils was 38,634 ha.

These netdowns were implemented spatially by randomly selecting ESA polygons from the TSA's forested land base until the correct percentage was achieved. The selected polygons were then 100% removed from the THLB. Areas with previous logging history were not removed as part of this netdown.

#### 3.3.4 Non-Merchantable or Problem Forest Types

Non-merchantable forest types are stands that contain tree species not currently utilized in the TSA, or timber of low quality, small size and/or low volume. Non-merchantable types are entirely excluded from the timber harvesting land base as shown in Table 11.

#### Table 11. Non-merchantable forest types

| PFT<br>Type | Description *                          | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|-------------|----------------------------------------|----------------------|-------------------|-----------------------------------|
| Pine        | All pine leading stands (PI / Pw / Py) | 100%                 | 177,954           | 25                                |
| Larch       | All larch leading stands               | 100%                 | 8                 | 0                                 |
| Decid.      | All deciduous leading stands           | 100%                 | 18,843            | 8                                 |
|             | Total                                  |                      | 196,805           | 33                                |

\* Sites with a previous logging history were retained in the land base.

The net impact of this netdown is low because these stands were typically deemed uneconomic during the operability assessment because they provided little to no economic value (revenue) when harvested. Alder leading stands may be put back into the THLB during a sensitivity analysis to determine alder volume availability.

#### 3.3.5 Low Productivity Sites

Sites with low growing potential are areas that are not expected to contribute to the THLB because they take too long to produce a commercial crop of trees. The list of exclusion criteria can be found in Table 12. These definitions were derived based on a review of past licensee performance in various site index categories. Limited logging occurred in stands with site indices below the thresholds shown here but it was not significant enough to warrant inclusion of all stands with that site index in the THLB.

Table 12. Low site netdowns

| Leading<br>Species | Description *                                 | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown<br>Area (ha) |
|--------------------|-----------------------------------------------|----------------------|-------------------|-----------------------------------|
| Fd                 | 150 yr old Fd stands <350 m3/ha or SI<17 m    | 100%                 | 3,982             | 380                               |
| Cw/Yc              | 150 yr old Cw stands <300 m3/ha or SI<12 m    | 100%                 | 105,696           | 16,304                            |
| Hw/Ba              | 150 yr old Hw/Ba stands <350 m3/ha or SI<11 m | 100%                 | 47,192            | 1,128                             |
| Sx                 | 150 yr old Sx stands <350 m3/ha or SI <10 m   | 100%                 | 20,792            | 7                                 |
| Total              | Total                                         |                      |                   |                                   |

\* Sites with a previous logging history were not removed by this netdown.

A portion of these stands were already removed during the economic operability assessment as they were not economically viable to harvest. Low productivity stands incurred higher costs because they were assumed to have smaller piece sizes and they had less volume per ha over which to amortize fixed costs such as logging system setup, road building, and silviculture costs.

Only a small proportion of the total 'low site' area is netted down here because the remainder of the area was already removed by other netdowns such as parks, operability, and ESA's.

#### 3.3.6 Cultural Heritage Resource Deductions

The *Heritage Conservation Act* provides for the protection of British Columbia's archaeological sites predating 1846. In accordance with the *Act* (Section 13(2)), archaeological sites may not be damaged, excavated or altered without a permit issued by the Minister or designate. The BC Provincial Heritage Register database is the basis for records on archaeological sites. The sites contained in this database were obtained and reviewed by Mid Coast technical committee members from the Heiltsuk and Gwa'sala'Nakwaxda First Nations. The mapped areas were deemed inadequate to represent the issue as several know sites were missing and there will be further impacts from currently unknown sites. Considering the effort required to improve the dataset and the sensitivity of this information to FN's, it was decided to include this issue with the non spatial netdown approach taken to address the First Nation EBM issues discussed later in this document. Refer to section 8.5 for more detail. Uncertainty around this issue will be addressed in the THLB size sensitivity analysis.

#### 3.3.7 Karst

In March 2007, a GAR order established specific elements of karst systems as "resource features" in the North Island - Central Coast Forest District and this designation results in protection under FRPA's Forest Planning and Practices Regulations. The elements named in the GAR order are:

- Karst caves
- Important features and elements within high and very high vulnerability karst
- Significant surface karst features

Mapped inventory data reflecting karst likelihood (presence) and development intensity (quality) was reviewed for the Mid Coast TSA. This mapping does not directly identify karst vulnerability it was assumed that areas with a high likelihood of occurrence combined with a high quality rating would meet this definition. There was almost no area ranked as high (primary) likelihood in the TSA. Discussions within the MFR staff and licensees confirmed that karst features are rare in the TSA and any occurrences can be effectively dealt with using stand level retention strategies. Thus, no netdown was specifically implemented for karst.

#### 3.3.8 Wildlife Habitat Areas (WHA's)

The provincial *Identified Wildlife Management Strategy* provides for the creation of Wildlife Habitat Areas (WHA) within the TSA, to protect key habitat features of listed wildlife species. Legal WHA's exist in the TSA for Grizzly Bear while Draft WHA's have been developed for Sandhill Crane, Tail Frog, Northern Goshawk, and Marbled Murrelets. Only the legal Grizzly Bear WHA's will be netted out of the land base in the Base Case as the others are not yet finalized. Proposed WHA's may be evaluated using sensitivity analysis and can also be addressed at the time of determination by considering their contribution to the target 1% impact on the THLB as defined in the Identified Wildlife Management Strategy.

The FRPA Section 7 Notice indicates that 16,000 hectares of grizzly bear habitat are to be maintained in the Mid Coast TSA of which no more than 6,046 ha<sup>3</sup> can be within the TSR2 THLB. The established grizzly WHA's were designed to be consistent with this requirement. Since grizzly bear habitat was factored into the TSR1/TSR2 analysis (and considered as pre-FPC practice) the impact of this requirement is deemed to be extra to the IWMS 1% limit.

| Description        | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|--------------------|----------------------|-------------------|-----------------------------------|
| Grizzly Bear WHA's | 100%                 | 13,661            | 3,755                             |

Table 13. Reductions for established WHA's

#### 3.3.9 Mountain Goat Winter Range

In 2007, a Government Action Regulation (GAR - #U-5-004)) order was established that identifies habitat areas and prevents harvest from occurring in 90% of the habitat area in each landscape unit. This will be modeled by ensuring 90% of the habitat in each LU is spatially reserved from harvest.

<sup>&</sup>lt;sup>3</sup> The total area indicated in the Notice equals the area mapped by MELP in 1988 as critical forest habitat for grizzly bears. The maximum impact on THLB indicated in the Notice is equal to the area of THLB reported in the TSR2 AAC Rationale. However, grizzly bear areas were factored into the analysis as cover constraints, not reserves, so the equivalent impact on the TSR2 THLB is less than 10,000 hectares. Calculations based on TSR2 LTHL, estimate an equivalent THLB impact of 6,046 hectares (3.2% of base case). WHAs 5-120 through 5-541 were established under this account.

Table 14. Reductions for Mountain Goat

| Description                | Percent<br>Reduction | Prod Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|----------------------------|----------------------|-------------------|-----------------------------------|
| Mountain Goat Winter Range | 90%                  | 29,985            | 65                                |

Note: The total productive area (TSA forested land) was 33,318 ha.

The area to be reserved (90% or 29,985 ha) was selected using any constrained land base first and then any unconstrained land base starting with the lowest site indexes. Each LU was evaluated independently. The vast majority of the Mountain Goat area overlapped with inoperable areas, parks, or ESA's. There were only 4 LU's where the unconstrained land base did not satisfy the minimum of 90% of the required area: Johnston (35 ha), Bella Coola (21 ha), Ellerslie (8 ha), and Sheep Passage (3 ha). The overall Mountain Goat Winter Range protection reaches 32,555 ha (98%) at the TSA level.

#### 3.3.10 FRPA Riparian Reserve and Management Zones

Riparian reserve areas around lakes, wetlands, and streams in the Mid Coast TSA are excluded from the timber harvesting land base. Management practices within riparian management zones also resulted in areas excluded from the timber harvesting land base. Based on typical licensee FSP commitments, a portion of the volume/area of these zones was retained as shown in the tables below. In the analysis, this was represented by an additional buffer width that was 100% excluded. When the reserve zone and representative portion of the management zone were added together, an "effective" buffer width was defined and then ultimately used in the model as a 100% spatial netdown. See Table 16 for a description of the netdown assumptions for lakes and wetlands, and Table 15 for a description of stream netdown assumptions.

#### 3.3.10.1 Streams and Rivers

Stream classifications were assigned to all TRIM stream reaches using a classification algorithm designed to be consistent with the FRPA definitions. Stream widths were inferred from stream order and magnitude (number of reaches above). Buffers were applied to both sides of mapped streams using 'effective' widths as per Table 15 and then removed from the timber harvesting land base. Basal area retention in management zones is reflective of typical management practices in the TSA.

| Stream Class    | Reserve<br>Zone<br>(RRZ)<br>(m) | Mgmt Zone<br>(RMZ)(m) | RMZ Basal <sup>(1)</sup><br>Area Retention<br>(%) | Effective <sup>(2)</sup><br>Riparian Rsv<br>Width (m) | Prod <sup>(3)</sup><br>Area<br>(ha) | Effective<br>Netdown<br>Area (ha) |
|-----------------|---------------------------------|-----------------------|---------------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------------------|
| S1-A (>100 m)   | 0                               | 100                   | 50                                                | 50                                                    | 4 417                               | 1 720                             |
| S1-B (20-100 m) | 50                              | 20                    | 50                                                | 60                                                    | 4,417                               | 1,723                             |
| S2              | 30                              | 20                    | 50                                                | 40                                                    | 3,997                               | 1,687                             |
| S3              | 20                              | 20                    | 50                                                | 30                                                    | 3,668                               | 1,207                             |
| S4              | 0                               | 30                    | 25                                                | 7.5                                                   | 2,894                               | 905                               |
| S5              | 0                               | 30                    | 15                                                | 4.5                                                   | 826                                 | 224                               |
| S6              | 0                               | 20                    | 5                                                 | 1                                                     | -                                   | -                                 |
| Total           |                                 |                       |                                                   |                                                       | 15,803                              | 5,752                             |

| Table 15. | Land base | reductions  | for | streams    |
|-----------|-----------|-------------|-----|------------|
| 10010 101 | Eana babb | 10440410110 |     | 00.0001110 |

<sup>(1)</sup> Based on licensee operational practices as per approved FSPs.

(2) Effective riparian rsv width = RRZ + (RMZ \* (basal area retention / 100)). This width is applied to both sides of the stream.
(3) This area excludes protected and conservancy areas (parks/conservancy and designated areas).

Only buffered S1-S5 streams were removed spatially. The small buffers on S6 streams were used to calculate a non-spatial retention percentage for each polygon and then this was tracked in Patchworks. These areas are able to contribute toward non timber objectives but did not contribute toward harvest volumes/areas.

#### 3.3.10.2 Lakes and Wetlands

Lake and wetland classifications were assigned to all TRIM water polygons consistent with the logic in the Riparian Management Guidebook (MFR 1997). Buffers were created adjacent to mapped lakes and wetlands using 'effective' widths as per Table 16 and then removed from the timber harvesting land base.

| Lake/Wetland<br>Class | Reserve<br>Zone<br>(RRZ) (m) | Mgmt<br>Zone<br>(RMZ) (m) | RMZ Basal <sup>(4)</sup><br>Area<br>Retention<br>(%) | Effective <sup>(5)</sup><br>Riparian Rsv<br>Width (m) | Prod <sup>(6)</sup><br>Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|-----------------------|------------------------------|---------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------------------|
| L1-A (>1000 ha)       | 0                            | 0                         | 0                                                    | 0                                                     | 073                                 | 200                               |
| L1-B (5-1000 ha)      | 10                           | 40                        | 0                                                    | 10                                                    | 915                                 | 200                               |
| L2                    | 10                           | 20                        | 25                                                   | 15                                                    | -                                   | -                                 |
| L3                    | 0                            | 30                        | 25                                                   | 7.5                                                   | 167                                 | 61                                |
| L4                    | 0                            | 30                        | 25                                                   | 7.5                                                   | -                                   | -                                 |
| Total                 |                              |                           |                                                      |                                                       | 1,140                               | 349                               |
| W1 (> 5ha)            | 10                           | 40                        | 25                                                   | 20                                                    | 115                                 | 21                                |
| W2                    | 10                           | 20                        | 25                                                   | 15                                                    | -                                   |                                   |
| W3                    | 0                            | 30                        | 25                                                   | 7.5                                                   | 175                                 | 66                                |
| W4                    | 0                            | 30                        | 25                                                   | 7.5                                                   | -                                   |                                   |
| W5                    | 10                           | 40                        | 25                                                   | 20                                                    | 200                                 | 52                                |
| Total                 |                              |                           |                                                      |                                                       | 490                                 | 139                               |
| (4)                   |                              |                           |                                                      | -                                                     |                                     |                                   |

Table 16. Land base reductions for lakes and wetlands

(4) Based on licensee operational practices as per approved FSPs.
(5) Effective riperion recence width a recence and the recence of the recence o

<sup>5)</sup> Effective riparian reserve width = reserve zone + (management zone \* (basal area retention / 100)).

<sup>(6)</sup> This area excludes protected and conservancy areas (parks/conservancy and designated areas).

#### 3.3.11 Recreation Features

Recreation features are features on the land base that are important to public and commercial recreation activities. These can include wildlife viewing areas, camp sites, sheltered moorage areas, etc and can sometime result in the exclusion of harvest activities.

Using the Recreation Features Inventory (RFI) dataset for the Mid Coast TSA, high value areas were identified. Polygons coded with Significance/Sensitivity ratings of VH-H, H-H, VH-M, H-M, M-H were selected for netdown considerations. After a review of these areas, it was determined that only a subset (50%) of the areas falling outside constraining VQO polygons (Preservation, Retention, Partial Retention) should be removed as netdowns. These areas represented things like grizzly bear viewing areas in river valleys and a 100% netdown was considered excessive. Licensee's operational experience in the TSA is that recreational values can be accommodated through management and rarely result in land base netdowns.

Table 17. Recreation netdowns

| Recreation inventory polygons outside of<br>P, R, and PR VQO's with the following<br>Significance - Sensitivity ratings: | Prod Area<br>(ha) | 50% Random<br>Selected Area<br>(ha) | Effective<br>Netdown Area<br>(ha) |
|--------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|-----------------------------------|
| VH - H                                                                                                                   | 472               | 209                                 | 90                                |
| H-H                                                                                                                      | 8,914             | 4,423                               | 1,364                             |
| VH - M                                                                                                                   | 248               | 121                                 | 8                                 |
| H - M                                                                                                                    | 11,284            | 5,717                               | 2,003                             |
| M - H                                                                                                                    | 1                 | -                                   | -                                 |
| Total                                                                                                                    | 20,920            | 10,470 (50%)                        | 3,466                             |

The 50% netdown was turned into a spatial 100% netdown (10,470 ha) by randomly selecting resultant polygons until half of the designated productive area was selected. Then only the area falling outside of previous netdowns was counted toward the effective netdown area. A significant portion of the effective netdown area had past logging in it but it was still removed from the landbase.

#### 3.3.12 EBM Riparian Management

EBM requirements for High Value Fish Habitat, Aquatic Non High Value Fish Habitat, Active Fluvial Units (Floodplains), and Forested Swamps have the potential to result in additional land base netdowns and are discussed below. EBM requirements for Upland Streams and Important Fisheries Watersheds are addressed using forest cover constraints and are discussed in sections 8.5.6 and 8.5.10.

For the purpose of defining reserve zones, the following tree heights were used:

- Outer Coast: 30 m
- Inner Coast: 40 m

Both EBM Orders<sup>4</sup> also offer the potential to use alternative riparian reserve strategies with the implementation of adaptive management, information sharing with FN's, and environmental monitoring – but the default EBM assumptions have been assumed for the base case.

#### 3.3.12.1 High Value Fish Habitat (EBM Obj 9)

High Value Fish Habitat is defined as "critical spawning and rearing areas for anadromous and nonanadromous fish". This occurs in a subset of streams and portions of the ocean shoreline.

For streams:

HVFH was spatially identified using 1:20000 scale streams with a gradient of <= 5% on terrain with <=5% slope and under 900 m in elevation. These criteria are meant to capture the vast majority of alluvial streams in the TSA based on the direction that all alluvial streams should be treated as HVFH unless proven otherwise in the field<sup>5</sup>. The link between 5% gradient streams and alluvial streams is drawn from work completed by Glynnis Horel, P. Eng.<sup>6</sup>. The inclusion of the terrain constraint was intended to eliminate sharply incised draws that are unlikely to be alluvial in nature. A buffer of 45m (30 m x 1.5) on the outer coast and 60 m (40 m x 1.5) on the inner coast was then applied to both side of the streams and the resulting area was fully reserved from harvest.

The Central North Coast Order (2009) also defines as high value fish habitat a reserve zone of 150 m on each side of the natural boundary for the lower portion of the Kimsquit River (Schedule 7). The buffer polygon was obtained from the Integrated Land Management Bureau webpage under the Coast Land Use Decision Implementation section<sup>7</sup>. This polygon has a total area of 1,133 ha and resulted in an effective netdown of 264 ha. The South Central Coast Order (2009) also defines as HVFH the lower portion of the Klinaklini River and Viner Creek but these are outside the boundaries of the Mid Coast TSA.

#### For oceans:

Key spawning habitat was identified on nautical charts using symbology indicating a high correlation with the occurrence of high value fish habitat (shallow water depth, soft seabed). These portions of the shoreline were then captured and buffered in the same manner as HVFH streams.

| Description                       | Percent<br>Reduction | <b>Prod Area (ha)</b><br>(Incremental to Other Riparian) | Effective Netdown<br>Area (ha) |
|-----------------------------------|----------------------|----------------------------------------------------------|--------------------------------|
| HVFH                              | 100%                 | 5,782                                                    | 1,603                          |
| HVFH lower portion Kimsquit River | 100%                 | 1,133                                                    | 264                            |

Table 18. Reductions for HVFH

<sup>&</sup>lt;sup>4</sup> South Central Coast Order (March 27, 2009) and the Central and North Coast Order (March 27, 2009). Source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/index.html [accessed online: May 28, 2009].

<sup>&</sup>lt;sup>5</sup> Background and Intent Document for the SCC and CNC Land Use Objectives Orders, April 18, 2008, pg 23. Source:

http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/LUO.pdf. [accessed online: May 20, 2009]

<sup>&</sup>lt;sup>6</sup> Defining Active Fluvial Units, Glynnis Horel - Ostapowich Engineering Services Ltd, April 1, 2006, pg 2

<sup>&</sup>lt;sup>7</sup> Primary source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/index.html. Schedule 7 – Kimsquit 150 m Buffer source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/docs/kimsquit\_sched\_20090316.pdf. Buffer polygon source: ftp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm\_data/CNC\_Amendments/Kimsquit\_River\_cnc.zip [accessed online: May 20, 2009] It should be noted that this polygon did not line up well with the 20k stream netdown – was obviously created from more coarse data.

The total productive area shown here represents only the incremental reserves beyond FRPA requirements. If HVFH were to be implemented without FRPA, this area would be significantly higher.

#### 3.3.12.2 Aquatic Non High Value Fish Habitat (EBM Obj 10)

Aquatic non-high value fish habitat was also derived from the TRIM 20,000 scale stream data and using FRPA stream classifications. Both orders require that S1-S3 streams, lakes >0.25 ha, and wetlands >0.25 ha that are not HVFH be classified as aquatic non-high value fish habitat. The orders differ slightly in their requirements for reserves (Table 19) and the areas impacted can be found in Table 20.

| Table 19. | Riparian | Retention | requirements | for Aquatic | Non HVFH |
|-----------|----------|-----------|--------------|-------------|----------|
|-----------|----------|-----------|--------------|-------------|----------|

| Riparian Feature                 | SCC Order                                                 | CNC Order                 |  |
|----------------------------------|-----------------------------------------------------------|---------------------------|--|
| S1 S2 Strooms that are not UV/EU | Retain 90% of the PFLB within 1.5                         | 5x dominant tree height * |  |
| 31-33 Streams that are not HVPH  | (implemented as 100% reserve with                         | thin 1.35x tree height)   |  |
| Lakes and wotlands >1ba          | Retain 90% of the PFLB within 1.5x dominant tree height * |                           |  |
|                                  | (implemented as 100% reserve within 1.35x tree height)    |                           |  |
|                                  | SCC order : 90% Retention                                 | CNC order: 90% Retention  |  |
| Lakes and wetlands 0.25 to 1ha   | within 1.5 tree height.                                   | within 1.0 tree height.   |  |
|                                  | (1.35 x tree height)                                      | (0.9 x tree height)       |  |

\* Tree heights were 30 m on outer coast and 40 m on inner coast.

#### Table 20. Reductions for Aquatic NonHVFH

| Description      | Percent<br>Reduction | <b>Prod Area (ha)</b><br>(Incremental to Other<br>Riparian) | Effective Netdown<br>Area (ha) |
|------------------|----------------------|-------------------------------------------------------------|--------------------------------|
| Aquatic Non HVFH | 100%                 | 6,630                                                       | 2,094                          |

The total productive area shown here represents only the incremental reserves beyond FRPA requirements. Without FRPA, this area would be significantly higher.

#### 3.3.12.3 Forested Swamps (EBM Obj 11)

Both EBM orders require that forested swamps >0.25 ha are to have 70% retention within 1.5x the dominant tree height. Because they are relatively rare in coastal BC<sup>8</sup>, and typically have marginal timber values on them, they were assumed to be addressed in the netdown for stand level retention (EBM Obj 16).

#### 3.3.12.4 Active Fluvial Units (EBM Obj 13)

Floodplain (active fluvial units) areas were identified using the CCLRMP floodplain dataset (which was derived using the coastal small scale PEM SELES model) and the mapped TRIM floodplains. These areas were then reduced by excluding any areas occupied by coniferous stands at least 200 years old (>80% coniferous) and any isolated polygons <=0.25 ha in size. The very small polygons were considered to be noise in the dataset and eliminated. The CCLRMP floodplains included high bench floodplains that were not meant to be considered active fluvial units in the final orders. Thus areas with old conifer stands were assumed to be stable within the timeframe of forest management and not "active fluvial units" as defined in the orders (Defining Active Fluvial Units, Glynnis Horel, P. Eng., Ostapowich Engineering Services Ltd, April 1, 2006).

<sup>&</sup>lt;sup>8</sup> Pers. Con. Ken Zielke of Symmetree Consulting Ltd. Based on experience doing EBM training work and compliance assessments.

Reserved areas for floodplains are detailed in both the North and South Central Coast EBM orders, although the application of reserves differs. The SCC order requires the reserve of 90% of mapped floodplain areas and the CNC order requires the reserve of 100% of mapped floodplain areas plus 90% retention within 1.5 times dominant tree hts (1.35X avg. dominant tree ht.). Tree heights were 30 m on outer coast and 40 m on inner coast.

Within the SCC area, the area to be reserved (90%) was selected using any constrained land base first and then any unconstrained land base starting with the lowest site indexes.

Table 21. Reductions for Active Fluvial Units

| Description                              | Percent<br>Reduction | <b>Prod Area (ha)</b><br>(Incremental to Other<br>Riparian) | Effective Netdown<br>Area (ha) |
|------------------------------------------|----------------------|-------------------------------------------------------------|--------------------------------|
| Active Fluvial Units (Floodplains) – SCC | 100%                 | 941                                                         | 203                            |
| Active Fluvial Units (Floodplains) – CNC | 100%                 | 4,752                                                       | 947                            |
| Total                                    |                      | 5,693                                                       | 1,150                          |

The total productive area shown here represents only the incremental reserves beyond FRPA requirements. Without FRPA, this area would be significantly higher.

#### 3.3.13 Grizzly Bear Habitat (EBM Obj. 17)

Grizzly bears are a highly important regional species on the South Central Coast and Central and North Coast. The EBM orders spatially identify grizzly bear habitat and require that it be maintained as functional habitat. The WHA's discussed under section 3.3.8 have a high degree of overlap with these EBM grizzly habitat areas.

#### SCC Order Area:

The order requires that grizzly bear habitat mapped in Schedule 2 (released March 2009)<sup>9</sup> be maintained. These mapped areas represent class 1 grizzly bear habitat. The order provides for limited harvesting to occur in these areas if a qualified professional confirms that it will not cause a 'material adverse impact' to the suitability of the grizzly bear habitat, suitable monitoring is completed, and information sharing/consultation takes place with First Nations. Limited harvesting can also occur if needed to accommodate minor block boundary adjustments, or if no practicable alternative for road access exists.

#### CNC Order Area:

This order requires that all class 1 grizzly bear habitat and 50% of class 2 grizzly habitat as mapped in Schedule 2 be maintained (released March 2009)<sup>10</sup>. It also allows for harvesting under the same circumstances described for SCC Order above.

#### Implementation:

The licensees felt that this would preclude harvest from 90% of the mapped habitat based on their opinion that not all of the mapped area will have the desired attributes on the ground, a small amount of harvesting would not negatively impact habitat values, and small incursions for operational/safety reasons is allowed. Thus, a spatial netdown representing 90% of the mapped grizzly habitat area was implemented. The 90% target was met in each grizzly polygon unit by selecting non-contributing or constrained areas first – this left the areas most likely to be in the THLB as contributing. For example, if up to 10% of the mapped habitat area in a grizzly polygon is THLB then there would be no impact on the THLB. Table 22 shows the effective netdown area from the THLB (2,745 ha).

The grizzly polygon GIS data obtained for both EBM orders was dissolved on Class 1 and 2 (adjacent polygons in the same class become one polygon). The constraint is applied using these grizzly polygons. The data also identified previously harvested areas as habitat, which should not have been

<sup>&</sup>lt;sup>9</sup> Source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/docs/grizzly\_bear\_sched\_sc\_20090323.pdf. Database source: ttp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm\_data/SCC\_Amendments/Grizzly\_scc.zip [accessed online: May 20, 2009] <sup>10</sup> Source: http://www.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/docs/grizzly\_bear\_sched\_nc\_20090323.pdf. Database source: ttp://ftpnan.env.gov.bc.ca/dist/gisdata/cclrmp/ebm\_data/CNC\_Amendments/grizzly\_bear\_nc.zip [accessed online: May 20, 2009]

included and thus were excluded them from the analysis<sup>11</sup>. Previously logged areas provide temporary habitat because of high abundance of berries but are not a permanent grizzly bear habitat area.

| Description                      | Prod Area<br>(ha) | Percent<br>Reduction | Area<br>Reduction (ha) | Effective<br>Netdown Area (ha) |
|----------------------------------|-------------------|----------------------|------------------------|--------------------------------|
| CNC Class 1 Grizzly Bear Habitat | 36,356            | 90%                  | 32,721                 | 2,245                          |
| CNC Class 2 Grizzly Bear Habitat | 4,747             | 50%                  | 2,374                  | 59                             |
| SCC Class 1 Grizzly Bear Habitat | 8,139             | 90%                  | 7,325                  | 441                            |
| Total                            | 49,243            |                      | 42,420                 | 2,745                          |

Table 22. Reductions for Grizzly Bear Habitat

## 3.4 Exclusions from the Productive Forest Land Base (Non-Spatial)

#### 3.4.1 EBM Objective 4, 5, 6, 7 – First Nations Considerations

Both the Central and North Coast Order (CNC) and the South Central Coast Order (SCC) contain objectives to manage for issues important to First Nations that will result in land base netdowns:

- Objective 4 (Traditional Heritage Features) is aimed at protecting specific traditional heritage features that are of continuing importance to First Nations.
- Objective 5 (Culturally Modified Trees) is designed to identify and protect culturally modified trees of continuing importance to First Nations.
- Objective 6 (Monumental Cedar) is designed to provide for a sufficient volume of monumental cedar to support the present and future cultural cedar needs of First Nations.
- Objective 7 (Stand Level Retention of Cw/Yc) is designed to ensure that sufficient western red and yellow cedar is maintained within Cedar Stewardship Areas to support the applicable First Nations use of these species for cultural and social uses.

Note: Objective 3 (Traditional Forest Resources) is not addressed through netdowns so is not included here. See section 8.5.1 for details.

The consideration of First Nations values described in EBM Objective's 4, 5, 6, and 7 are estimated to have a 1.3% net/incremental impact on the THLB (Obj 3 is addressed in 8.5.1). This impact level is based on a similar netdown developed for the Kingcome TSR3 project where the known impact was mapped and then doubled. The Kingcome dataset representing known First Nations heritage sites was more complete, and updating the Mid Coast dataset was not considered practical within the timelines of this TSR. The technical committee felt that it was best to rely on the recent efforts invested in Kingcome TSA for application in the Mid Coast TSA. This 1.3% impact was implemented as a non spatial reduction to all THLB polygons and the resulting netdown was treated as part of the PFLB.

The full impact of managing for First Nations considerations is known to be larger than 1.3% but this value represents the incremental impact after other factors are also considered (e.g. parks, inoperable, ESA's, FRPA and EBM riparian areas, wildlife habitat reserves, stand level retention requirements, etc). These other factors leave only ~13% of the forested landbase where timber harvesting is expected to occur and it is this area that the additional 1.3% impact is applied. Uncertainty around this issue will be addressed in the THLB size sensitivity analysis.

#### 3.4.2 EBM Objective 15 – Red and Blue Listed Plant Communities

The SCC and CNC orders require 100% retention (5% can be disturbed for access) of red listed plant communities and 70% retention of blue-listed plant communities. Identifying the spatial locations of these communities is currently difficult as there is little detailed ecosystem mapping available for the Mid Coast TSA. Thus, the net THLB impact for the Kingcome TSR3 process was considered as a starting point. The

<sup>&</sup>lt;sup>11</sup> Pers. Con. Tony Hamilton. Large Carnivore Specialist, Wildlife Science Section. Ministry of Environment, Victoria, BC.

Kingcome TSR3 analysis applied a 3% incremental net impact over and above all other landbase constraints that came from EBM being applied to 80% of the landbase, mathematically this would extrapolate to 3.8% for Midcoast (100% EBM).

However, the Kingcome TSA estimate was based on a biophysical model simulation of ecosystems and correlations between these ecosystems and red/blue listed plant communities developed by the Timberline Natural Resources Group.<sup>12</sup> After consideration of the methods used to identify these sites in the biophysical modeling project, and the improved understanding of how sites are to be identified in the field the Mid Coast licensees felt that a 3% impact is likely excessive and thus it should not be increased any further. The basis for this conclusion is primarily because the areas attributed to the plant communities listed in Obj15 (Sched 6) are expected to occupy only a subset of the mature site series that was spatially identified in the biophysical model and the site series described on the CDC Blue List. In addition to this operational experience suggests that an incremental impact for Blue Listed plant communities is unnecessary. Thus 3% will be used in the base case. This impact is entirely attributed to blue listed plant communities are assumed to be captured by other netdowns. The 3% net impact was implemented as a non spatial area reduction to all THLB polygons. The resulting netdown area was treated as part of the PFLB. Uncertainty around this issue will be addressed in the THLB size sensitivity analysis.

#### 3.4.3 Stand Level Retention (EBM Obj. 16)

The retention of mature standing timber in each block is required to provide structure and diversity at the stand level. Both the SCC and CNC orders state that a minimum 15% of each cutblock should be retained and 50% of this retention should be internal to the cutblock if it's over 15 ha. For the purpose of timber supply analysis, it was necessary to determine what the net impact of this stand level retention objective was because there is significant overlap with other factors already being modeled. For example, riparian areas are often used to meet stand level retention requirements and they have already been addressed in the THLB netdown process.

Based on an EBM monitoring report produced by Symmetree Consulting Group that examined the retention left in EBM blocks in 2006<sup>13</sup>, the net impact of the 15% retention requirement was estimated by Forsite to have an incremental impact of 4.6% on the THLB after all other netdowns were considered. The key findings were that the group retention and clearcut blocks had an actual retention level of 21% (instead of 15%) and 21.8% of this retention appeared to be incremental to the netdowns already spatially addressed in this analysis. This suggested a 4.6% net impact from the EBM stand level retention requirement.

District MFR staff also examined this issue using RESULTS data (2005-2008) and found that blocks with aggregate retention had retained 23% on average. This estimate is slightly higher than that found by Symmetree (21%) but came from a much larger sample. As there was no breakdown in RESULTS of the reasons why the 23% was left, the Symmetree study's net impact percentage (21.8%) was used to reduce the 23% to a net impact of 5.0% (above all spatial netdowns). Licensees felt that a gross retention percentage of 23% (net 5%) was higher than what was currently occurring on the landbase but agreed to use it for the purpose of this analysis.

The 1.3% impact discussed earlier for First Nations EBM considerations was felt to partially overlap with the 5% because it had not yet been considered in the estimate, plus the licensees would likely choose to use areas retained for First Nations issues (CMT's, heritage sites) to meet stand level retention objectives. In absence of better information, it was assumed that 50% of the 1.3% would overlap ( $1.3^* 50\%=0.6$ ) so this left a <u>4.4% net impact (5% -0.6%</u>) to be attributed to stand level retention. This level of netdown appears conservative considering the fact that >88% of the TSA's productive forested land base has already been excluded from timber harvesting and incremental impacts for First Nations issues and Red/Blue listed plant communities are also being assumed.

<sup>&</sup>lt;sup>12</sup> Methods Used to Model Ecosystem Based Management in the Kingcome TSA for Timber Supply Review 3, Timberline Natural Resource Group, 2007

<sup>&</sup>lt;sup>13</sup> Implementation Monitoring of EBM in the Central Coast (Symmetree, Feb 28, 2007)

This 4.4% impact was modeled as a non spatial reduction to all THLB polygons (in addition to the 1.3% for FN issues and 3% for red/blue listed species). The resulting netdown was treated as part of the PFLB. Uncertainty around this issue will be addressed in the THLB size sensitivity analysis.

#### 3.5 Timber License Reversions

Timber licensees (TL's) are old tenures where licensees have the rights to harvest standing mature timber within specified tenure boundaries and this harvest does not count toward the TSA's AAC. Once harvested and regenerated, these areas revert to the crown and become part of the TSA land base – thus contributing to the mid and long term timber supply in the TSA.

Area that were < 50 yrs old inside the mapped TL's were consider to have already reverted to the TSA for purposed of timber supply modeling. The remaining areas were considered to revert at 600 ha per year (consistent with TSR2 assumptions.)

Table 23 provides a summary of the TL's falling inside the Mid Coast TSA.

| TL #  | Licensee            | Location | Expiry Date                          |
|-------|---------------------|----------|--------------------------------------|
| T0377 | A&A Trading Ltd     | TSA      | June 10, 2019                        |
| T0398 | IFP                 | TSA      | Sept. 3, 2024                        |
| T0407 | IFP                 | TSA      | Sept. 3, 2009 (extension submitted). |
| T0438 | IFP                 | TSA      | Sept. 3, 2010                        |
| T0474 | IFP                 | TSA      | Sept. 3, 2024                        |
| T0483 | IFP                 | TSA      | Sept. 3, 2017                        |
| T0572 | IFP                 | TSA      | Sept. 3, 2015                        |
| T0608 | IFP                 | TSA      | Sept. 3, 2024                        |
| T0614 | Dean Channel FP Ltd | TSA      | Sept. 3, 2021                        |
| T0633 | Dean Channel FP Ltd | TSA      | Sept. 3, 2015                        |
| T0690 | IFP                 | TSA      | Dec. 9, 2010                         |
| T0697 | IFP                 | TSA      | Dec. 30, 2009                        |
| T0742 | IFP                 | TSA      | Apr. 16, 2016                        |
| T0906 | WFP                 | TSA      | Expired (extension submitted).       |
| T0912 | WFP                 | TSA      | Apr. 27, 2010                        |
| T0941 | IFP                 | TSA      | Oct. 23, 2007                        |
| T0945 | IFP                 | TSA      | Oct. 23, 2009                        |
| T0952 | A&A Trading Ltd     | TSA      | Oct. 23, 2024                        |
| T0964 | IFP                 | TSA      | Oct. 23, 2024                        |
| T0973 | IFP                 | TSA      | Oct. 23, 2024                        |
| T0980 | IFP                 | TSA      | Oct. 23, 2024                        |
| T0996 | IFP                 | TSA      | Oct. 23, 2024                        |
| T1001 | IFP                 | TSA      | Oct. 23, 2014                        |

Table 23. Timber Licences occurring in the Mid Coast TSA

The TL's that will revert to the Community Forest's upon harvest will not contribute toward the TSA in the future. Only the areas associated with the TL's that will ultimately revert to the TSA are shown below.

Table 24. Timber license area summary

| Currently Reverted Area | Currently Unreverted Area | Total Area |
|-------------------------|---------------------------|------------|
| (ha)                    | (ha)                      | (ha)       |
| 22,409                  | 5,279                     | 27,688     |

### 3.6 Changes from TSR2

Since the last timber supply review for the Mid Coast TSA, numerous changes have occurred that impact the size of the THLB. A summary of these changes is provided below:

- New Conservancies, and Biodiversity, Mining and Tourism Areas have been established.
- Two new community forest tenures exist and are no longer part of the TSA.
- A new operable area was defined using stand level economic assessments and Patchworks modeling.
- Low productivity site netdowns now use lower thresholds (vol/ha and site index).
- Recreation netdowns are now based on a new inventory and then limited to areas outside of the most constraining VQO polygons (Preservation, Retention, Partial Retention)
- Legal WHA's exist for grizzly bear.
- New Mountain Goat Winter Range areas have been established and almost entirely exclude harvest.
- Riparian netdowns were implemented spatially using classified stream/lake/wetland datasets.
- Culturally Modified Trees (CMT's) were addressed as part of the First Nations EBM issue.
- EBM considerations from the North and South Central Coast Orders resulted in netdowns for:
  - High Value Fish Habitat (HFVH)
  - o Aquatic Non High Value Fish Habitat
  - Active fluvial units (floodplains)
  - o CMT's/Cultural Cw/ Monumental Cw
  - o Grizzly Bear Habitat
  - Stand Level Retention / Forested Swamps
  - Red and Blue List Species

The TSR3 short term effective THLB of 123,162ha is smaller than the TSR2 'preferred reference' forecast<sup>14</sup> THLB by 35.3%. The majority of this difference comes from the introduction of new parks/protected areas, a new operable land base, and the introduction of EBM and wildlife requirements.

Other, non-THLB related changes since TSR2 include (described in section 8.0):

- Disturbance limits exist in Important Fisheries Watersheds (EBM Obj. 8)
- ECA requirements applied in portions of certain watersheds to manage Upland Streams (EBM Obj. 12)
- Higher old seral retention requirement are now applicable and they were modeled at a finer level on the land base (LU-site series surrogate combinations instead of LU-BEC variant combinations).
- The amount of mid seral forest was limited to 50% within LU-SSS combinations.
- A new UWR order for black tailed deer exists and requires from 20-25% of the habitat in each LU to be >141 yrs old at any time. TSR 2 required 25% > 250 yrs old.
- Dispersed Retention harvesting is modeled in Preservation and Retention VQO areas and no forest cover disturbance constraints are applied in these areas. Dispersed Retention harvesting is also applied in 10% of the Partial Retention VQO areas, along with forest cover disturbance constraints.
- Existing dispersed retention blocks were assigned to a separate AU (315) with reduced yields.

<sup>&</sup>lt;sup>14</sup> 190425 ha - TSR2 Rationale pg 17. This THLB area was the same as in the 'revised operability' forecast but the rate of harvest from the outer coast and non-conventional areas was controlled to be sustainable over the long term – effectively lowering the amount of these areas that could be accessed in the short and midterm and making this comparison of land base imperfect.

# 4.0 Growth and Yield

### 4.1 Analysis Units

To reduce the complexity and volume of information in the timber supply analysis, individual stands were aggregated into 'analysis units' based on leading tree species (inventory type group), site productivity, and age. Each analysis unit had an associated yield table that provided the net merchantable volume available for harvest at various stand ages.

| Table 25. | Analysis | Unit Descr | iptions |
|-----------|----------|------------|---------|
|-----------|----------|------------|---------|

|                                     | Entertin                                                                                                                           | Bogon | PFLB      | тш в    | SI<br>Wtd    | SI                                      | Variables used to define analysis |                 |             |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|---------|--------------|-----------------------------------------|-----------------------------------|-----------------|-------------|
|                                     | Existing                                                                                                                           | Regen |           | THLB    |              | Wtd                                     | unit                              |                 |             |
| Analysis Unit Description           | Stand                                                                                                                              | Stand | Area      | Area    | Ava          | Δνα                                     | Leading                           | Site            | Age         |
|                                     | AU #                                                                                                                               | AU#   | (ha)      | (ha)    | Avy<br>(Inv) | (ihA)                                   | Species                           | index           | Range       |
|                                     |                                                                                                                                    |       |           |         | (1117)       | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                   | range           | (yrs)       |
| Existing Natural Stands:            |                                                                                                                                    |       | 980,833   | 105,999 |              |                                         |                                   |                 |             |
| Douglas-fir-good                    | 101                                                                                                                                | 201   | 1.111     | 400     | 29.7         | 29.7                                    | Fd                                | >27             | 26-140vrs   |
| Douglas-fir-medium                  | 102                                                                                                                                | 202   | 3,397     | 789     | 24.7         | 24.7                                    | Fd                                | 20-27           | 26-140yrs   |
| Douglas-fir-poor                    | 103                                                                                                                                | 203   | 3,630     | 119     | 17.9         | 17.9                                    | Fd                                | <20             | 26-140yrs   |
| Cedar-good                          | 104                                                                                                                                | 204   | 1,163     | 621     | 27.2         | 23.9                                    | Cw or Yc                          | >23             | 20-140yrs   |
| Cedar-medium                        | 105                                                                                                                                | 205   | 3,087     | 2,002   | 22.9         | 23.1                                    | Cw or Yc                          | >19-23          | 20-140yrs   |
| Cedar-poor                          | 106                                                                                                                                | 206   | 1,029     | 573     | 15.5         | 21.2                                    | Cw or Yc                          | 15-19           | 20-140yrs   |
| Cedar-low                           | 107                                                                                                                                | 207   | 1,991     | 122     | 13.8         | 23.6                                    | Cw or Yc                          | <15             | 20-140yrs   |
| Hemlock/balsam-good                 | 108                                                                                                                                | 208   | 6,331     | 2,191   | 28.1         | 27.3                                    | H or B                            | >22             | 26-140yrs   |
| Hemlock/balsam-medium               | 109                                                                                                                                | 209   | 17,570    | 6,230   | 21.6         | 26.9                                    | H or B                            | >17-22          | 26-140yrs   |
| Hemlock/balsam-poor                 | 110                                                                                                                                | 210   | 7,288     | 534     | 14.6         | 26.2                                    | H or B                            | 12.5-17         | 26-140yrs   |
| Hemlock/balsam-low                  | 111                                                                                                                                | 211   | 12,151    | 39      | 11.7         | 24.8                                    | H or B                            | <12.5           | 26-140yrs   |
| Spruce-good                         | 112                                                                                                                                | 212   | 1,316     | 282     | 27.7         | 27.7                                    | S                                 | >22             | 26-140yrs   |
| Spruce-medium                       | 113                                                                                                                                | 213   | 3,444     | 318     | 20.7         | 20.7                                    | S                                 | 15-22           | 26-140yrs   |
| Spruce-poor                         | 114                                                                                                                                | 214   | 4,097     | 55      | 11.7         | 11.7                                    | S                                 | <15             | 26-140yrs   |
| Douglas-fir-good                    | 121                                                                                                                                | 221   | 391       | 42      | 27.7         | 27.7                                    | Fd                                | >27             | >140yrs     |
| Douglas-fir-medium                  | 122                                                                                                                                | 222   | 5,283     | 1,007   | 23.2         | 23.2                                    | Fd                                | 20-27           | >140yrs     |
| Douglas-fir-poor                    | 123                                                                                                                                | 223   | 9,325     | 643     | 18.7         | 18.7                                    | Fd                                | <20             | >140yrs     |
| Cedar-good                          | 124                                                                                                                                | 224   | 386       | 149     | 24.2         | 22.3                                    | Cw or Yc                          | >23             | >140yrs     |
| Cedar-medium                        | 125                                                                                                                                | 225   | 2,717     | 816     | 20.4         | 23.6                                    | Cw or Yc                          | >19-23          | >140yrs     |
| Cedar-poor                          | 126                                                                                                                                | 226   | 48,270    | 17,279  | 16.6         | 20.9                                    | Cw or Yc                          | 15-19           | >140yrs     |
| Cedar-low                           | 127                                                                                                                                | 227   | 262.713   | 36.515  | 13.1         | 19.2                                    | Cw or Yc                          | <15             | >140vrs     |
| Hemlock/balsam-good                 | 128                                                                                                                                | 228   | 4,558     | 520     | 24.3         | 26.9                                    | H or B                            | >22             | >140yrs     |
| Hemlock/balsam-medium               | 129                                                                                                                                | 229   | 44,770    | 10.048  | 18.8         | 25.2                                    | H or B                            | >17-22          | >140vrs     |
| Hemlock/balsam-poor                 | 130                                                                                                                                | 230   | 132,065   | 19,987  | 15.0         | 24.5                                    | H or B                            | 12.5-17         | >140yrs     |
| Hemlock/balsam-low                  | 131                                                                                                                                | 231   | 133,282   | 2,868   | 11.7         | 23.0                                    | H or B                            | <12.5           | >140yrs     |
| Spruce-good                         | 132                                                                                                                                | 232   | 3,436     | 341     | 27.4         | 27.4                                    | S                                 | >22             | >140yrs     |
| Spruce-medium                       | 133                                                                                                                                | 233   | 23,452    | 730     | 18.8         | 18.8                                    | S                                 | 15-22           | >140yrs     |
| Spruce-poor                         | 134                                                                                                                                | 234   | 43,764    | 778     | 13.3         | 13.3                                    | S                                 | <15             | >140yrs     |
| Non Merch - Cottonwood              | 151                                                                                                                                | 256   | 3,294     | -       | -            | -                                       | Ac                                | All             | All         |
| Non Merch - Alder                   | 152                                                                                                                                | 255   | 9.016     | -       | -            | -                                       | Dr                                | All             | All         |
| Non Merch - All Others              | 153                                                                                                                                | 257   | 186,504   | -       | -            | -                                       | At. Mb. Pl. L                     | All             | All         |
| Existing Managed Stands:            |                                                                                                                                    | -     | 44,810    | 29,343  |              |                                         |                                   |                 |             |
| Douglas-fir-good                    | 301                                                                                                                                | 401   | 1,158     | 707     | 28.6         | 28.6                                    | Fd                                | >27             | <=25        |
| Douglas-fir-medium/poor             | 302                                                                                                                                | 402   | 2,639     | 1,803   | 23.5         | 23.5                                    | Fd                                | 20-27           | <=25        |
| Douglas-fir-poor                    | 303                                                                                                                                | 403   | 1,086     | 342     | 16.0         | 16.0                                    | Fd                                | <27             | <=25        |
| Cedar-good                          | 304                                                                                                                                | 404   | 1,010     | 919     | 26.7         | 23.2                                    | Cw or Yc                          | >23             | <=19        |
| Cedar-medium                        | 305                                                                                                                                | 405   | 2,648     | 1,785   | 22.0         | 21.6                                    | Cw or Yc                          | 19-23           | <=19        |
| Cedar-poor                          | 306                                                                                                                                | 406   | 3,359     | 2,281   | 17.0         | 19.1                                    | Cw or Yc                          | 15-19           | <=19        |
| Cedar-low                           | 307                                                                                                                                | 407   | 2,056     | 1,112   | 13.0         | 21.0                                    | Cw or Yc                          | <15             | <=19        |
| Hemlock/balsam-good                 | 308                                                                                                                                | 408   | 7,623     | 5,375   | 25.1         | 25.6                                    | H or B                            | >22             | <=25        |
| Hemlock/balsam-medium               | 309                                                                                                                                | 409   | 12,895    | 9,320   | 21.5         | 25.8                                    | H or B                            | >17-22          | <=25        |
| Hemlock/balsam-poor                 | 310                                                                                                                                | 410   | 4,028     | 2,185   | 15.1         | 21.3                                    | H or B                            | 12.5-17         | <=25        |
| Hemlock/balsam-low                  | 311                                                                                                                                | 411   | 2,118     | 324     | 11.6         | 20.9                                    | H or B                            | <12.5           | <=25        |
| Spruce-good                         | 312                                                                                                                                | 412   | 998       | 581     | 27.8         | 27.8                                    | S                                 | >22             | <=25        |
| Spruce-medium                       | 313                                                                                                                                | 413   | 1,425     | 860     | 21.0         | 21.0                                    | S                                 | 15-22           | <=25        |
| Spruce-poor                         | 314                                                                                                                                | 414   | 89        | 72      | 12.0         | 12.0                                    | S                                 | <15             | <=25        |
| Existing Dispersed Retention        | 315                                                                                                                                | 415   | 1,678     | 1,678   | 15.8         | 20.4                                    | Ex blocks w                       | ith multi-stori | ed stk stds |
| Total                               |                                                                                                                                    |       | 1,025,643 | 135,343 | 17.2         | 22.5                                    |                                   | -               |             |
| Note: The adjusted site index (SI V | Note: The adjusted site index (SI Wtd Avg -Adi) shown for each AU in this table is only applicable to managed stands (AU's > 200). |       |           |         |              |                                         |                                   |                 |             |

### 4.2 Site Index

Estimates of site productivity were required in this analysis to predict the rate of growth that will occur on each site throughout the TSA. The height of a "site" tree at age 50 (measured at breast height) is one measure of site productivity and is commonly referred to as "site index".

#### 4.2.1 Site Index Adjustment for Managed Stands

Timberline Natural Resource Group completed a Site Index Adjustment (SIA) project for the Mid Coast TSA during 2008<sup>15</sup>. The project developed improved estimates of site index for managed Cw and Hw leading stands. These adjusted site indexes will be used in place of inventory site indexes when building managed stands yield curves (TIPSY curves) for the TSR3 base case.

The statistical adjustment process compared field data to expert derived preliminary estimates of site index generated for individual polygons and then used a ratio-of-means (ROM) statistical procedure to adjust the site indexes. The 95% sampling error was 1.2m for Cw and 1.3m for Hw and was within the target sampling error of  $\pm 1.5m$  (95% probability).

|         | Target Population |                   | Sample List |                 |                   |       |                | Adj.           | Рор.      |
|---------|-------------------|-------------------|-------------|-----------------|-------------------|-------|----------------|----------------|-----------|
| Species | Area<br>(ha)      | Prelim PSI<br>(m) | n           | Field SI<br>(m) | Prelim PSI<br>(m) | ROM   | R <sup>2</sup> | Avg. SI<br>(m) | SE<br>(m) |
| Cw      | 483,436           | 20.5              | 42          | 23.6            | 22.6              | 1.046 | 4.4            | 21.4           | 1.2       |
| Hw      | 483,436           | 24.8              | 60          | 27.7            | 27.6              | 1.002 | 1.1            | 24.9           | 1.3       |

Table 26. Cw and Hw Site Index Adjustment Statistics

N = number of samples, SE = sampling error.

When the adjusted site indexes are compared against inventory site indexes (Cw and Hw stands) in the target population, the adjusted values can be seen to be significantly higher: +7.3m (or 56%) for Cw and +9.8m (or 63%) for Hw. The change is average site index for each Analysis Unit and the THLB as a whole can be viewed Table 25. When applied fully in the THLB, the average site index rises from 17.2m to 22.3 m (+5.1m or 29.7%).

#### 4.2.2 Site Curves

For each tree species, site curves were available to illustrate the relationship between stand height and age for a range of site indices. In all cases, this analysis used the standard site curves recommended by the BC Ministry of Forests as identified in the *Site Tools* software. They were as follows:

| Table 27. S | Site index source |
|-------------|-------------------|
|-------------|-------------------|

| Species      | Source                  |
|--------------|-------------------------|
| Cw (coastal) | Kurucz (1985ac)         |
| Hw (coastal) | Wiley (1978ac)          |
| Ss           | Nigh (1997)             |
| Fd (coastal) | Bruce (1981ac)          |
| Ва           | Kurucz (1982ac)         |
| Dr           | Nigh and Courtin (1998) |

### 4.3 Utilization Level

Utilization levels define the maximum height of stumps that may be left on harvested areas, the minimum top diameter (inside bark), and the minimum diameter at breast height (dbh) of stems that must be removed from

<sup>&</sup>lt;sup>15</sup> Timberline Natural Resource Consultants Ltd. 2009. *Site Index Adjustment of the Mid Coast Timber Supply Area* (Project # BC0108405), January 2009, Timberline Natural Resource Consultants, Victoria, BC

harvested areas. These factors were needed to calculate merchantable stand volume for use in the analysis, and will be used for all analysis units.

| Table 28. | Utilization levels |
|-----------|--------------------|
|-----------|--------------------|

| Species                 | Minimum dbh <sup>(5)</sup> (cm) | Maximum stump height (cm) | Minimum top dib <sup>(6)</sup> (cm) |
|-------------------------|---------------------------------|---------------------------|-------------------------------------|
| Existing Natural Stands | 17.5                            | 30                        | 10                                  |
| Existing Managed Stands | 12.5                            | 30                        | 10                                  |
| Future Managed Stands   | 12.5                            | 30                        | 10                                  |

<sup>(5)</sup> Diameter breast height

<sup>(6)</sup> Diameter inside bark

## 4.4 Decay, Waste and Breakage for Unmanaged Stands

Decay, waste and breakage (DWB) factors are applied to natural stand yield tables (VDYP) to obtain net harvest volumes per hectare. Initial net volume estimates were generated using the adjusted inventory attribute values (age, height, site index) in VDYP with the default decay, waste and breakage factors applied.

## 4.5 Operational Adjustment Factors for Managed Stands

Operational Adjustment Factors (OAFs) were applied in order to adjust potential yields generated by the TIPSY growth and yield model down to net operational volumes. This included reductions for such things as gaps in stands, decay/waste/breakage, and endemic forest health losses.

There were two types of OAFs used in the TIPSY model. OAF 1 is a constant percentage reduction to account for openings in stands, distribution of stems or clumpiness, endemic pests and diseases, and other risks to potential yield. OAF 2 is an increasing percentage reduction that can be applied to account for decay, waste and breakage. OAF 2 is applied after OAF 1 and increases linearly over time from 0 percent at age 0 to the specified percentage at 100 years of age.

Standard operational adjustment factors (OAF) were used to model managed stands. OAF1 was set to 0.85 (15% reduction) and OAF2 was set to 0.95 (5% reduction).

### 4.6 Natural Stand Volume Projections

Yield tables were derived for existing natural stands using VDYP 6 Batch v6.6d. A yield table was generated for each polygon and then aggregated into one table for each Analysis Unit (AU) using area weighted averages. The yield tables used during modeling and are provided in Appendix A.

## 4.7 Managed Stand Yield Tables

All future managed stand AU's had an associated existing stand AU from which it inherited stands when they were logged. These future managed stand AU's used the area weighted adjusted site indexes for each AU (Table 25) and the regeneration assumption outlined in this document (Section 5.0). These values were input into Batch TIPSY 4.1c to generate a yield curve for each AU.

Existing managed stand yields were also derived using the adjusted site index (Table 25) and the regeneration assumptions outlined in Section 5.0. Existing managed stands are those currently under 25 years of age (est. 1983) for Fd, Hw and Ba stands and under 19 years of age (est. 1989) for Cw/Yc stands.

The regeneration assumptions required to model managed stands in TIPSY consist of:

- Species composition (See section 5.1);
- Initial density (See section 5.1);
- Regeneration method (See section 5.1);
- Area-weighted average site index (See section 5.1);

- Area-weighted genetic gains (See section 5.4);
- Operational adjustment factors (See section 4.5); and
- Regeneration delay (See section 5.3).

Once merchantable stand yields were obtained from TIPSY, yield estimates were further reduced to reflect the area lost to future roads (see section 3.2.4.3). These 'effective' yield tables were used during modelling and are provided in Appendix A.

## 4.8 Existing Timber Volume Check

To verify that no errors were made in natural stand yield table aggregation and that no significant aggregation bias exists, the total volume of the current (starting) inventory using polygon-specific inventory volumes was compared to the volume derived using analysis unit yield tables. The results for existing natural (VDYP) AU's are shown in Table 29 by AU and in Table 30 by age class.

| AU       | THLB Area | Volume der           | ived from: | Difference From Inv |        |                                 |
|----------|-----------|----------------------|------------|---------------------|--------|---------------------------------|
|          | (na)      | Yield tables<br>(AU) | Inventory  | m <sup>3</sup>      | %      | Comments                        |
| 101      | 400       | 187,943              | 190,160    | 2,217               | -1.2%  |                                 |
| 102      | 789       | 226,177              | 238,057    | 11,880              | -5.3%  |                                 |
| 103      | 119       | 17,139               | 16,269     | -870                | 5.1%   |                                 |
| 104      | 621       | 111,184              | 109,638    | -1,546              | 1.4%   |                                 |
| 105      | 2,002     | 84,727               | 67,464     | -17,263             | 20.4%  |                                 |
| 106      | 573       | 24,876               | 48,435     | 23,559              | -94.7% |                                 |
| 107      | 122       | 16,284               | 24,075     | 7,791               | -47.8% |                                 |
| 108      | 2,191     | 739,080              | 700,676    | -38,404             | 5.2%   |                                 |
| 109      | 6,230     | 654,081              | 583,484    | -70,597             | 10.8%  |                                 |
| 110      | 534       | 76,249               | 83,662     | 7,413               | -9.7%  |                                 |
| 111      | 39        | 7,409                | 9,526      | 2,117               | -28.6% | AU's 101 to 114 (which are      |
| 112      | 282       | 72,874               | 55,022     | -17,852             | 24.5%  | natural stands <140 yrs),       |
| 113      | 318       | 38,272               | 30,741     | -7,531              | 19.7%  | cended to have poorer           |
| 114      | 55        | 7,178                | 8,297      | 1,119               | -15.6% | inventory and yield tables      |
| 121      | 42        | 37,709               | 38,670     | 961                 | -2.5%  | Better correlations occurred    |
| 122      | 1,007     | 660,526              | 702,063    | 41,537              | -6.3%  | in the older (> 140 yrs) Al l's |
| 123      | 643       | 265,690              | 316,599    | 50,909              | -19.2% | where the bulk of the THI B     |
| 124      | 149       | 125,724              | 129,024    | 3,300               | -2.6%  | exists                          |
| 125      | 816       | 592,201              | 627,640    | 35,439              | -6.0%  |                                 |
| 126      | 17,279    | 10,151,917           | 10,189,438 | 37,521              | -0.4%  |                                 |
| 127      | 36,515    | 15,668,931           | 16,043,562 | 374,631             | -2.4%  |                                 |
| 128      | 520       | 520,147              | 495,790    | -24,357             | 4.7%   |                                 |
| 129      | 10,048    | 8,413,272            | 8,178,844  | -234,428            | 2.8%   |                                 |
| 130      | 19,987    | 12,540,019           | 12,543,481 | 3,462               | 0.0%   |                                 |
| 131      | 2,868     | 1,311,870            | 1,368,975  | 57,105              | -4.4%  | ]                               |
| 132      | 341       | 395,122              | 365,441    | -29,681             | 7.5%   |                                 |
| 133      | 730       | 868,607              | 672,146    | -196,461            | 22.6%  |                                 |
| 134      | 778       | 587,310              | 572,074    | -15,236             | 2.6%   |                                 |
| All VDYP | 105,999   | 54,402,518           | 54,409,254 | 6,736               | -0.01% |                                 |

Table 29. Existing timber volume check by AU


Figure 6. Net volumes by AU based on AU curves or forest inventory data

| Table 30. | Existing | timber | volume | check b  | v Age C | lass |
|-----------|----------|--------|--------|----------|---------|------|
| 10010 00. | LAISUNG  |        | volume | CHICCK D | , лус С | 1000 |

| Age      | THLB Area | a Volume derived from: Difference From Inv |            | me derived from: Difference From Inv Con |        | Comments                     |
|----------|-----------|--------------------------------------------|------------|------------------------------------------|--------|------------------------------|
| Class    | (na)      | Yield tables<br>(AU)                       | Inventory  | m³                                       | %      |                              |
| 0-20     | 348       | 318                                        | 21         | -297                                     | 93.4%  | Yield curves in younger age  |
| 21-40    | 9,041     | 482,169                                    | 392,918    | -89,251                                  | 18.5%  | classes (<140 years) tended  |
| 41-60    | 2,237     | 474,608                                    | 471,509    | -3,099                                   | 0.7%   | to have poor correlations    |
| 61-80    | 400       | 151,515                                    | 142,150    | -9,365                                   | 6.2%   | between yield curves and     |
| 81-100   | 723       | 360,584                                    | 340,686    | -19,898                                  | 5.5%   | inventory volumes. Better    |
| 101-120  | 442       | 230,147                                    | 244,180    | 14,033                                   | -6.1%  | correlations occurred in the |
| 121-140  | 1,084     | 564,132                                    | 574,041    | 9,909                                    | -1.8%  | older (≥ 140 yrs) age        |
| 141-250  | 13,013    | 7,508,271                                  | 7,510,991  | 2,720                                    | 0.0%   | classes where the bulk of    |
| 250+     | 78,711    | 44,630,774                                 | 44,732,757 | 101,983                                  | -0.2%  | the THLB exists.             |
| All VDYP | 105,999   | 54,402,518                                 | 54,409,254 | 6,736                                    | -0.01% |                              |



Figure 7. Net volumes by age class based on AU curves or forest inventory data

Overall, the volumes being generated from the AU yield tables correlated well with the inventory (<1% difference).

# 5.0 Silviculture

### 5.1 Silviculture management regimes

While several different silvicultural management regimes have historically been utilized in the Mid Coast TSA, the dominant regime has been to clearcut and retain patches of leave trees within or adjacent to harvest units. With the introduction of EBM, there has been an emphasis on leaving more retention, and leaving a porton of it internal to the block for larger harvest units. Specific to the Mid Coast TSA, this type of silviculture can be broken down into two broad categories:

- Clearcut with Reserves
  - Retention is left in patches that are either along the edge of a block or internal to a block and these patches are retained for a full rotation. With EBM, blocks over 15 ha in size require half of the required retention to be left internal to the block. This has been interpreted to mean islands of trees, riparian strips, or fingers of retention jutting out into the block.<sup>16</sup>
  - The amount of retention left in clearcut with reserve blocks in the Mid Coast TSA has historically averaged 23% and this is addressed though spatial netdowns and the stand level retention netdown discussed in section 3.4.3.
  - EBM is likely to result in more internal retention than in traditional FRPA blocks and thus there is potential for some incremental productivity losses associated with forest edge/shading. This issue is currently not modeled in BC when clearcut with reserves is used because it is very small, but as retention levels and the amount of edge increases, the issue could begin to be a concern. No productivity reductions have been modeled here because TIPSY does not model edge impacts from cutblock perimeter edge and because EBM does not explicitly require internal retention to provide 'forest influence' over any particular amount of the block (there is no spacing requirements for retention).
  - This silviculture regime is expected to be the dominant approach used in the TSA going forward.
- Dispersed Retention
  - Retention is left scattered throughout the harvest unit so that most of the unit is under some influence of retained stems.
  - This type of retention was used in a subset of blocks in the Mid Coast between 2001 and 2006, but it has not been used in recent years because of challenges getting stocking standards approved in FSP's and sustainability concerns when high levels of retention were used.
  - Between 2001 and 2006, the amount of retention in dispersed retention blocks was higher than with clearcut with reserves blocks (retention levels avg. 34%). This is partially because the systems were often utilized in areas managed for visuals or other non timber values.
  - Modeling Historical Dispersed Retention;
    - Based on RESULTS data, blocks utilizing multi-storied stocking standards were queried out and assumed to be dispersed retention blocks. This provided an area of ~2,800 ha but only 1,678 ha were in the THLB. Numerous existing blocks were removed by netdowns such as operability and ESA soils netdowns. Recent blocks start the analysis at an age of zero.
    - The 1,678 ha were placed into a separate Analysis Unit (AU 315) and had a yield curve developed that reflected 34% of the stand as mature and 66% of the stand as regenerating.
    - A regenerating yield curve was developed in TIPSY using the inputs shown in Table 32 and assuming a retention level of 34% (80% dispersed, 20% aggregate). Top heights were 40 m, crown size was 30 m<sup>2</sup>, and aggregate group sizes were a half hectare (5,000 m<sup>2</sup>). This curve was used to define the minimum harvest age.

<sup>&</sup>lt;sup>16</sup> Background and Intent Document for the South Central Coast and Central and North Coast Land Use Objectives Orders Apr 2008 <u>http://archive.ilmb.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/LUO.pdf</u> page 42

- The volume attributed to the mature portion of the stand was estimated using the VDYP curve for 109 (HB Med) and an assumed harvest age of 150 years (628 m<sup>3</sup>/ha, conservative estimate of volume).
- The volume for the retained stand (34% of AU 109 at age 150) was added to the TIPSY regen curve at time zero and shifted the entire TIPSY curve upward. This was done so that the old VR retention prescription is not imbedded in the yield curve only the reduced productivity on the regenerating portion of the stand is reflected in the curve (not loss of growing space). Without this step, we would be assuming that 34% of the area would never be harvested again. The intent is to recognize the full volume on the site (less std spatial netdowns) if it is clearcut in the future or else follow the future VR prescription if it is designated for that to occur (R, P, 10%PR VQO's).
- o Modeling Future Dispersed Retention (DR)
  - Any future use of dispersed retention is expected to be limited to highly constrained visually sensitive areas. All stands within Preservation or Retention VQO polygons will be modeled as DR, and 10% of the THLB in Partial Retention VQO's (selected randomly) will be modeled as DR. This results in 7,185 ha of THLB being assigned to DR future treatments (599 ha of which were also historical DR).
  - Future DR has been defined as 30% retention (10% dispersed + 20% group). The group retention was assumed to be captured by the spatial netdowns and the 4.4% stand level retention already being applied. Thus, the 4.4% was applied in addition to 10% DR.
  - 14.4% (10 DR + 4.4 Agg Retn) of the landbase was retained spatially for each DR polygon<sup>17</sup> throughout the analysis. Thus the first harvest entry with a DR treatment has no yield curve reduction but does have 10% less area harvested than if it was clearcut.
  - Any second entry harvests in DR polygons use reduced yield curves that reflect the lower productivity of regeneration in DR stands (loss of growing sites already taken care of by the spatial netdown applied above).
  - A TYPSY yield curve was generated for each AU from its published regen assumptions but with a shift to 80% planting/20% natural and applying a 10% retention factor (100% dispersed). Top heights were 40 m and crown size was 30 m<sup>2</sup>.
  - A percent yield impact was determined relative to the AU's clearcut yield curve, and then reduced to reflect the fact that the loss of growing site is already being modeled spatially (so impact reduced by 10%). This avoids double counting the loss of growing site.
  - The DR yield reduction for each AU (using 100 years as base age) was then used to factor down the clearcut yields for each AU (creating a virtual set of DR AU's). For example, if TIPSY showed a 18% yield impact with DR relative to its clearcut equivalent, a DR harvest yield was derived by factored down the typical AU yield by 8% while the other 10% was implemented throughout the analysis as a spatial retention. This is consistent with what is occurring on the ground the retained portion of the stand is not logged and the regenerating portion experiences a yield reduction.
  - In general, the 10% DR resulted in 19-25% (avg. ~23%) gross yield impacts in TIPSY. These were modeled as 9-15% yield impacts (other 10% were modeled spatially as well as 4.4% for aggregate groups).

The term 'High Retention' harvesting has received a large amount of attention in the last several years on the BC coast. It involves leaving a large amount of dispersed mature stems on site (>30-40 m<sup>2</sup> of basal area) such that the stand is still considered 'stocked' after harvesting and thus there is no regeneration obligation. In the Mid Coast TSA, a small amount of this type of harvesting has occurred in the last 5 years and mostly in what was considered to be Non THLB stands. Past harvest areas fitting this description have been depleted from the inventory. In the future, licensees have no plans to do High Retention harvesting so it has not been modeled in this analysis.

<sup>&</sup>lt;sup>17</sup> Actually implemented in conjunction with other nonspatial netdowns such as red/blues listed species. Actual spatial retention values of 19% in DR polygons (10 DR + 4.4 Agg Retn + 0.3 S6 + 1.3 FN + 3.0 red/blue) and 9% in all other polygons (4.4 Agg Retn + 0.3 S6 + 1.3 FN + 3.0 red/blue) were applied throughout the analysis.

## 5.2 Regeneration Assumptions

After harvest, stands in the TSA follow various regeneration regimes depending on originating stand type. Some stand types rely on natural regeneration while others rely on planting or a combination of the two. This section of the data package summarizes the silvicultural management inputs used in the TIPSY growth and yield model for each managed stand AU. Table 31 provides a summary of the inputs used in TIPSY to produce managed stand yield curves. These assumptions were developed by licensee silviculture staff and reflect current regeneration practices for each of the stand types shown.

| Existing<br>AU# | Regen<br>AU # | Description         | Regen<br>Method                              | Regen Species<br>and Weighting<br>(%)                                                                              | SI Range | Initial<br>Competing<br>Density*<br>(stems/ha) | OAFs | Regen<br>Delay<br>(yrs) | Genetic<br>Worth<br>(Prorated<br>GW) |
|-----------------|---------------|---------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------|------|-------------------------|--------------------------------------|
| 101/121         | 201/221       | Douglas fir good    | Plant 100                                    | $Fd_6Cw_2Hw_2$                                                                                                     | >27      | 900                                            | 15/5 | 1                       |                                      |
| 102/122         | 202/222       | Douglas fir medium  | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Fd <sub>6</sub> Cw₂Hw₂<br>Fd₅Hw₅                                                                                   | 20-27    | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 103/123         | 203/223       | Douglas fir poor    | Plant <sub>80</sub><br>Natural <sub>20</sub> | $Fd_7Hw_2Cw_1$<br>$Fd_5Hw_3Cw_2$                                                                                   | <20      | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 104/124         | 204/224       | Cedar good          | Plant <sub>70</sub><br>Natural <sub>30</sub> | Cw <sub>7</sub> Hw₂Ba₁<br>Cw₅Hw₄Ba₁                                                                                | >23      | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 105/125         | 205/225       | Cedar medium        | Plant <sub>70</sub><br>Natural <sub>30</sub> | Cw <sub>7</sub> Hw₂Ba₁<br>Hw₅Cw₅                                                                                   | >19-23   | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 106/126         | 206/226       | Cedar poor          | Plant <sub>70</sub><br>Natural <sub>30</sub> | Cw <sub>7</sub> Hw <sub>2</sub> Yc <sub>1</sub><br>Cw <sub>4</sub> Hw <sub>4</sub> Yc <sub>2</sub>                 | 15-19    | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 107/127         | 207/227       | Cedar low           | Plant <sub>70</sub><br>Natural <sub>30</sub> | Cw <sub>6</sub> Yc <sub>2</sub> Hw <sub>2</sub><br>Cw <sub>4</sub> Hw <sub>4</sub> Yc <sub>2</sub>                 | <15      | 900<br>4000                                    | 15/5 | 1<br>3                  | Fd – 0.4%<br>Hw – 0%                 |
| 108/128         | 208/228       | Hemlock/balsam good | Natural 100                                  | Hw <sub>7</sub> Ba <sub>2</sub> Cw <sub>1</sub>                                                                    | >22      | 4000                                           | 15/5 | 2                       | Cw-4.2%                              |
| 109/129         | 209/229       | Hemlock/balsam med  | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw₅Ba₃Cw₂<br>Hw₅Ba₅                                                                                                | >17-22   | 900<br>4000                                    | 15/5 | 1<br>2                  | Ss – 0%                              |
| 110/130         | 210/230       | Hemlock/balsam poor | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw <sub>6</sub> Ba <sub>2</sub> Cw <sub>2</sub><br>Hw <sub>6</sub> Ba <sub>3</sub> Cw <sub>1</sub>                 | 12.5-17  | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 111/131         | 211/231       | Hemlock/balsam low  | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw <sub>6</sub> Ba <sub>2</sub> Yc <sub>1</sub> Cw <sub>1</sub><br>Hw <sub>6</sub> Ba <sub>3</sub> Yc <sub>1</sub> | <12.5    | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 112/132         | 212/232       | Spruce good         | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Ss₅Ba₄Hw₁<br>Hw₅Ss₄Ba₁                                                                                             | >22      | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 113/133         | 213/233       | Spruce medium       | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Ss <sub>4</sub> Ba <sub>4</sub> Hw <sub>2</sub><br>Hw <sub>4</sub> Ba <sub>3</sub> Ss <sub>3</sub>                 | 15-22    | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 114/134         | 214/234       | Spruce poor         | Plant <sub>95</sub><br>Natural ₅             | Ss <sub>4</sub> Ba <sub>3</sub> Hw <sub>3</sub><br>Hw <sub>6</sub> Ba <sub>2</sub> Ss <sub>2</sub>                 | >15      | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 151             | 251           | Cottonwood          | Natural 100                                  | Ac                                                                                                                 | All      | 5000                                           | 15/5 | 1                       |                                      |
| 152             | 252           | Alder               | Natural 100                                  | Dr                                                                                                                 | All      | 5000                                           | 15/5 | 1                       |                                      |

Table 31. Regeneration Assumptions (TIPSY inputs) Future Managed Stands

\* This density refers to the number of stems/ha that are competing to be the next crop trees. This number is typically higher than a well spaced number and lower than a total stems number because all competing stems are counted but those in a different layer (or cohort) are not counted.

Table 32. Regeneration Assumptions (TIPSY inputs) Existing Managed Stands

| Existing<br>AU# | Regen<br>AU # | Description             | Regen<br>Method                              | Regen Species<br>and Weighting<br>(%)                                                              | Regen Species<br>and Weighting SI Range<br>(%) |             | OAFs | Regen<br>Delay<br>(yrs) | Genetic<br>Worth<br>(Prorated<br>GW) |
|-----------------|---------------|-------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|------|-------------------------|--------------------------------------|
| 301             | 401           | Douglas-fir-good        | Plant 100                                    | Fd <sub>6</sub> Cw <sub>2</sub> Hw <sub>2</sub>                                                    | >27                                            | 900         | 15/5 | 1                       | 300-series                           |
| 302             | 402           | Douglas-fir-medium/poor | Plant <sub>95</sub><br>Natural <sub>5</sub>  | $Fd_6Cw_2Hw_2$<br>$Fd_5Hw_5$                                                                       | 20-27                                          | 900<br>4000 | 15/5 | 1<br>2                  | Fd – 0%                              |
| 303             | 403           | Douglas-fir-poor        | Plant <sub>80</sub><br>Natural <sub>20</sub> | Fd <sub>7</sub> Hw₂Cw <sub>1</sub><br>Fd₅Hw₃Cw₂                                                    | <20                                            | 900<br>4000 | 15/5 | 1<br>2                  | FW = 0%<br>CW = 0%                   |
| 304             | 404           | Cedar-good              | Plant <sub>80</sub><br>Natural <sub>20</sub> | Cw <sub>6</sub> Hw₃Ba₁<br>Cw <sub>6</sub> Hw₃Ba₁                                                   | >23                                            | 900<br>4000 | 15/5 | 1<br>2                  | 35 - 0%                              |
| 305             | 405           | Cedar-medium            | Plant <sub>80</sub><br>Natural <sub>20</sub> | Cw <sub>7</sub> Hw₂Ba₁<br>Hw₅Cw₅                                                                   | >19-23                                         | 900<br>4000 | 15/5 | 1<br>2                  | 400-series                           |
| 306             | 406           | Cedar-poor              | Plant <sub>80</sub><br>Natural <sub>20</sub> | Cw <sub>7</sub> Hw <sub>2</sub> Yc <sub>1</sub><br>Cw <sub>4</sub> Hw <sub>4</sub> Yc <sub>2</sub> | 15-19                                          | 900<br>4000 | 15/5 | 1<br>3                  | Fd – 0.4%                            |
| 307             | 407           | Cedar-low               | Plant <sub>80</sub><br>Natural <sub>20</sub> | Cw <sub>6</sub> Yc <sub>2</sub> Hw <sub>2</sub><br>Cw <sub>4</sub> Hw <sub>4</sub> Yc <sub>2</sub> | <15                                            | 900<br>4000 | 15/5 | 1<br>3                  | Hw – 0%<br>Cw – 4.2%                 |

| Existing<br>AU# | Regen<br>AU # | Description           | Regen<br>Method                              | Regen Species<br>and Weighting<br>(%)                                                                              | SI Range | Initial<br>Competing<br>Density*<br>(stems/ha) | OAFs | Regen<br>Delay<br>(yrs) | Genetic<br>Worth<br>(Prorated<br>GW) |
|-----------------|---------------|-----------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------|------|-------------------------|--------------------------------------|
| 308             | 408           | Hemlock/balsam-good   | Natural 100                                  | Hw <sub>7</sub> Ba <sub>2</sub> Cw <sub>1</sub> >22                                                                |          | 4000                                           | 15/5 | 2                       | Ss- 0%                               |
| 309             | 409           | Hemlock/balsam-medium | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw₅Ba₃Cw₂<br>Hw₅Ba₅                                                                                                | >17-22   | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |
| 310             | 410           | Hemlock/balsam-poor   | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw <sub>6</sub> Ba <sub>2</sub> Cw <sub>2</sub><br>Hw <sub>6</sub> Ba <sub>3</sub> Cw <sub>1</sub>                 | 12.5-17  | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 311             | 411           | Hemlock/balsam-low    | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw <sub>6</sub> Ba <sub>2</sub> Yc <sub>1</sub> Cw <sub>1</sub><br>Hw <sub>6</sub> Ba <sub>3</sub> Yc <sub>1</sub> | <12.5    | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 312             | 412           | Spruce-good           | Plant <sub>95</sub><br>Natural ₅             | Ss₅Ba₄Hw₁<br>Hw₅Ss₄Ba₁                                                                                             | >22      | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 313             | 413           | Spruce-medium         | Plant <sub>95</sub><br>Natural ₅             | Ss <sub>4</sub> Ba <sub>4</sub> Hw <sub>2</sub><br>Hw <sub>4</sub> Ba <sub>3</sub> Ss <sub>3</sub>                 | 15-22    | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 314             | 414           | Spruce-poor           | Plant <sub>95</sub><br>Natural <sub>5</sub>  | Ss <sub>4</sub> Ba <sub>3</sub> Hw <sub>3</sub><br>Hw <sub>6</sub> Ba <sub>2</sub> Ss <sub>2</sub>                 | >15      | 900<br>4000                                    | 15/5 | 1<br>3                  |                                      |
| 315             | 415           | Hemlock/balsam-medium | Plant <sub>20</sub><br>Natural <sub>80</sub> | Hw <sub>4</sub> Cw <sub>4</sub> Ba <sub>2</sub><br>Hw <sub>5</sub> Cw <sub>3</sub> Ba <sub>2</sub>                 | >17-22   | 900<br>4000                                    | 15/5 | 1<br>2                  |                                      |

#### 5.3 Regeneration delay

Regeneration delay is the time between harvesting and the time when stand regrowth begins. The delay incorporates both the time taken to establish a stand, and the age of seedling stock planted, if applicable. Based on past practices and the anticipated approach going forward, a one year delay for planted stands and a 2-3 year delay for naturally regenerating stands were used. See Table 31 for details.

## 5.4 Gene resources — use of select seed

Where it is available, the TSA uses select seed (class A seed from orchards) for regeneration because of its superior volume production. This section describes the yield adjustments used in this analysis to account for the use of select seed (i.e. orchard & superior provenance seed with a known genetic gain as measured by Genetic Worth (GW)).

Seed Planning Units (SPU's) are polygon features that geographically delineate the appropriate area of seedling use for stock originating from specific seed orchards throughout the province. Each SPU identifies the area and elevation range in which seedlings of a given orchard may be used in regeneration. The SPUs relevant in the Mid Coast TSA are shown in Table 33. Hemlock is not shown because it is rarely planted. Douglas fir and Cedar are only planted in specific analysis units. The respective area and proportion of the analysis units, the estimates of future genetic worth, and seedling availability from MFR Tree Improvement Branch are provided for each SPU in Table 34. Only a reduced portion of the Seed Planning Units will be effectively regenerated with the respective species. This specific portion for each SPU is defined by the Analysis Units and their regeneration strategy.

| Species           | Genetic Class "A"<br>Seed Planning Zone | Elevation Band<br>(m) |  |  |
|-------------------|-----------------------------------------|-----------------------|--|--|
| Douglas Fir       | Maritime high                           | 700-1200              |  |  |
| Douglas Fir       | Maritime low                            | 1-700                 |  |  |
| Douglas Fir       | Submaritime low                         | 400-1200              |  |  |
| Western Red Cedar | Maritime low                            | 1-600                 |  |  |
| Western Red Cedar | Maritime high                           | 600-1500              |  |  |
| Western Red Cedar | Submaritime low                         | 200-100               |  |  |

Table 33. Seed Planning Units within the Mid Coast TSA (Class A seed)

| Table 34. | Seed Planning | Units (Class A | Seed) genetic | worth and seed | l availability |
|-----------|---------------|----------------|---------------|----------------|----------------|
|-----------|---------------|----------------|---------------|----------------|----------------|

| SPU | THLB<br>Area<br>(ha) | Percent of<br>Regeneration<br>Area by<br>Species <sup>(7)</sup> | Genetic<br>Worth<br>Achieved<br>(2006-08 | Percent<br>Class A<br>Seedlings<br>(2006-08 | Planned<br>GW for<br>2009 | Planned Class<br>A Seed<br>Availability for<br>2009 | Projected<br>Future<br>Genetic<br>Worth % | Projected<br>Class A Seed<br>Availability<br>(2015) |
|-----|----------------------|-----------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|-----|----------------------|-----------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|

|            |        |     | Spar) | Spar) |     |       | (2015) |       |
|------------|--------|-----|-------|-------|-----|-------|--------|-------|
| Fdc M High | 47     | 1%  | 0%    | 0%    | 0%  | 0%    | 0%     | 0%    |
| Fdc M low  | 352    | 6%  | 8%    | 50%   | 14% | 35.8% | 17%    | 60.2% |
| Fdc SM low | 4,187  | 71% | 0%    | 0%    | 2%  | 42.8% | 8%     | 85.7% |
| Cw M High  | 9,601  | 7%  | 0%    | 0%    | 0%  | 0%    | 0%     | 0%    |
| Cw M low   | 91,595 | 66% | 2%    | 80%   | 8%  | 97.2% | 12%    | 100%  |
| Cw SM Low  | 22,798 | 16% | 0%    | 0%    | 0%  | 0%    | 0%     | 0%    |

<sup>(7)</sup> This percentage is the area of the analysis units in the THLB that will be planted with some proportion of Douglas fir or cedar, respectively. The rest of the area to complete the 100% considers Class B Seed.

A net GW applicable to each SPU was calculated using the values shown above for 2009 (GW x Avail% x % THLB). For example, Cw M Low has a gain of 8% projected for 2009 and class A seed is expected to be used 80% of the time on 66% of area that will effectible planted with cedar (8 x 0.8 x 0.66 = 4.2%). Current use (2008) of select seed is less than predicted by timelines for 2009 but this was felt to be offset by the increased gains projected into the future (between 2008 and 2015).

These values were then simplified to the species level by prorating the SPU values using THLB area.

<u>Existing managed stands</u> did not receive any adjustment reflecting improved seed use as the majority of stands would not have been established with improved seed. There will be a slight underestimation of timber supply in the future as a small portion of these stands will actually benefit from GW gains.

Future managed stands received the 2009 net GW's for Fdc (0.4%), Cw (4.2%).

Genetic gains were incorporated into the growth and yield curves through TIPSY model functionality. When Cw or Fdc were included in a planted managed stand AU, its associated Net GW was input into TIPSY. This net GW reflects the average genetic gain associated with ALL seedlings of a given species planted in a typical year and is shown in Table 35.

No increase in genetic worth was implemented during the planning horizon. This likely results in an underestimation of long term timber supply but was done because long term projected gains have yet to be proven.

| Species | Genetic Gains applied in TIPSY<br>For Base Case<br>Future Managed Stands (GW%xAval%) |
|---------|--------------------------------------------------------------------------------------|
| Cw      | 4.2%                                                                                 |
| Hw      | 0%                                                                                   |
| Fdc     | 0.4%                                                                                 |

Table 35. Net genetic worth by species to be applied in timber supply model

#### 5.5 Silviculture History (defining existing managed stands)

For growth and yield modeling, stands are classified into two categories based on their management status: natural/unmanaged stands and managed stands (2<sup>nd</sup> growth). Natural stands typically regenerated with no silviculture treatments that would have ensured full stocking and/or a good distribution of stems. Managed stands have had silviculture treatments and are assumed to be full stocked and well distributed. The area considered managed and natural is summarized in Table 36

Table 36. Managed and natural stand area

| Management<br>Status | Definition                                                     | THLB<br>(ha) |
|----------------------|----------------------------------------------------------------|--------------|
| Natural              | Cw leading >19 yrs and others > 25 yrs                         | 105,999      |
| Managed              | Cw leading <=19 yrs (est 1989) and others <= 25 yrs (Est 1983) | 29,343       |
| Total THLB Area      |                                                                | 135,342      |

## 5.6 Backlog and current not satisfactorily restocked areas (NSR)

Backlog NSR is any area that was denuded prior to 1987 (when basic silviculture became the obligation of licensees) and is not yet fully stocked. There is no backlog NSR remaining in the Mid Coast TSA. All other NSR areas are considered current NSR. Current NSR was assigned to existing managed stand analysis units and any delay in restocking these sites was reflected in the regeneration delays assigned to these analysis units. These sites have either been reforested but are not yet confirmed in the inventory file, or will be reforested because licenses are under a legal obligation to do so.

## 5.7 Incremental Silviculture and Commercial Thinning

In the Mid Coast TSA, approximately 1,000 ha of fertilization occurred in the early 1990's but little to no incremental silvicultural practices have occurred since. Commercial thinning is not occurring or planned.

# 6.0 Timber Harvesting

## 6.1 Minimum Harvestable Age / Merchantability Standards

In order for a stand within the timber supply model to be considered for harvesting, it must achieve a minimum harvest age that ensures it meets reasonable economic criteria and emulates what is generally current practice by forest licensees. Note that these are minimum criteria, not the actual ages at which stands are forecast for harvest. Some stands may be harvested at the minimum thresholds to meet forest-level objectives while other stands may be not be harvested until well past their "optimal" timber production ages due to management objectives for other resource values such as old forest retention requirements, or ungulate winter range.

For this analysis, minimum harvestable ages were defined using the following criteria:

- Existing stands: Minimum volume of 350 m<sup>3</sup>/ha and 45cm dbh (Cw) or 35 cm dbh (others) for the largest 250 trees.
- Future stands: Minimum volume of 350 m<sup>3</sup>/ha and 45cm dbh (Cw) or 35 cm dbh (others) for the largest 250 trees. Must also be within 90% of the culmination MAI.

These criteria were developed in the Economic Operability project (Forsite 2009) and carried forward here. The diameter thresholds are consistent with TSR2.

The minimum harvest age to be utilized for each analysis unit is defined in Table 37. For a detailed description of all analysis unit definitions, see Table 25.

|       | Existing Stands                |         | Future Stands |                                |             |      |  |  |
|-------|--------------------------------|---------|---------------|--------------------------------|-------------|------|--|--|
| AU    | AU Description                 | Min     | AU #          | AU Description                 | Min Harvest |      |  |  |
| #     |                                | Harvest |               |                                | Ag          | ge   |  |  |
|       |                                | Age     |               |                                | Group       | Disp |  |  |
|       |                                |         |               |                                | Retn        | Retn |  |  |
| Natur | al Stands                      |         |               |                                |             |      |  |  |
| 101   | Douglas fir good <=140yrs      | 75      | 201           | Douglas fir good <=140yrs      | 55          | 55   |  |  |
| 102   | Douglas fir medium <=140yrs    | 90      | 202           | Douglas fir medium <=140yrs    | 65          | 70   |  |  |
| 103   | Douglas fir poor <=140yrs      | 135     | 203           | Douglas fir poor <=140yrs      | 110         | 140  |  |  |
| 104   | Cedar good <=140yrs            | 105     | 204           | Cedar good <=140yrs            | 80          | 75   |  |  |
| 105   | Cedar medium <=140yrs          | 115     | 205           | Cedar medium <=140yrs          | 80          | 80   |  |  |
| 106   | Cedar poor <=140yrs            | 195     | 206           | Cedar poor <=140yrs            | 90          | 90   |  |  |
| 107   | Cedar low <=140yrs             | 235     | 207           | Cedar low <=140yrs             | 80          | 75   |  |  |
| 108   | Hemlock/balsam good <=140yrs   | 65      | 208           | Hemlock/balsam good <=140yrs   | 60          | 60   |  |  |
| 109   | Hemlock/balsam medium <=140yrs | 85      | 209           | Hemlock/balsam medium <=140yrs | 60          | 60   |  |  |
| 110   | Hemlock/balsam poor <=140yrs   | 135     | 210           | Hemlock/balsam poor <=140yrs   | 65          | 65   |  |  |
| 111   | Hemlock/balsam low <=140yrs    | 180     | 211           | Hemlock/balsam low <=140yrs    | 65          | 65   |  |  |
| 112   | Spruce good <=140yrs           | 60      | 212           | Spruce good <=140yrs           | 60          | 60   |  |  |

#### Table 37. Minimum harvest ages

|      | Existing Stands               |         | Future Stands |                               |        |        |  |
|------|-------------------------------|---------|---------------|-------------------------------|--------|--------|--|
| AU   | AU Description                | Min     | AU #          | AU Description                | Min Ha | arvest |  |
| #    |                               | Harvest |               |                               | Aç     | je     |  |
|      |                               | Age     |               |                               | Group  | Disp   |  |
|      |                               |         |               |                               | Retn   | Retn   |  |
| 113  | Spruce medium <=140yrs        | 80      | 213           | Spruce medium <=140yrs        | 75     | 75     |  |
| 114  | Spruce poor <=140yrs          | 135     | 214           | Spruce poor <=140yrs          | 125    | 150    |  |
| 121  | Douglas fir good >140yrs      | 80      | 221           | Douglas fir good >140yrs      | 55     | 60     |  |
| 122  | Douglas fir medium >140yrs    | 90      | 222           | Douglas fir medium >140yrs    | 65     | 80     |  |
| 123  | Douglas fir poor >140yrs      | 115     | 223           | Douglas fir poor >140yrs      | 100    | 125    |  |
| 124  | Cedar good >140yrs            | 115     | 224           | Cedar good >140yrs            | 90     | 85     |  |
| 125  | Cedar medium >140yrs          | 135     | 225           | Cedar medium >140yrs          | 80     | 75     |  |
| 126  | Cedar poor >140yrs            | 165     | 226           | Cedar poor >140yrs            | 95     | 90     |  |
| 127  | Cedar low >140yrs             | 235     | 227           | Cedar low >140yrs             | 110    | 105    |  |
| 128  | Hemlock/balsam good >140yrs   | 80      | 228           | Hemlock/balsam good >140yrs   | 60     | 60     |  |
| 129  | Hemlock/balsam medium >140yrs | 100     | 229           | Hemlock/balsam medium >140yrs | 65     | 65     |  |
| 130  | Hemlock/balsam poor >140yrs   | 125     | 230           | Hemlock/balsam poor >140yrs   | 70     | 65     |  |
| 131  | Hemlock/balsam low >140yrs    | 170     | 231           | Hemlock/balsam low >140yrs    | 70     | 70     |  |
| 132  | Spruce good >140yrs           | 60      | 232           | Spruce good >140yrs           | 60     | 60     |  |
| 133  | Spruce medium >140yrs         | 85      | 233           | Spruce medium >140yrs         | 85     | 80     |  |
| 134  | Spruce poor >140yrs           | 120     | 234           | Spruce poor >140yrs           | 110    | 125    |  |
| Mana | ged Stands                    |         |               |                               |        |        |  |
| 301  | Douglas-fir-good              | 55      | 401           | Douglas-fir-good              | 55     | 55     |  |
| 302  | Douglas-fir-medium/poor       | 65      | 402           | Douglas-fir-medium/poor       | 65     | 75     |  |
| 303  | Douglas-fir-poor              | 150     | 403           | Douglas-fir-poor              | 150    | 220    |  |
| 304  | Cedar-good                    | 80      | 404           | Cedar-good                    | 80     | 80     |  |
| 305  | Cedar-medium                  | 90      | 405           | Cedar-medium                  | 90     | 90     |  |
| 306  | Cedar-poor                    | 110     | 406           | Cedar-poor                    | 110    | 110    |  |
| 307  | Cedar-low                     | 90      | 407           | Cedar-low                     | 90     | 90     |  |
| 308  | Hemlock/balsam-good           | 65      | 408           | Hemlock/balsam-good           | 65     | 65     |  |
| 309  | Hemlock/balsam-medium         | 60      | 409           | Hemlock/balsam-medium         | 60     | 65     |  |
| 310  | Hemlock/balsam-poor           | 80      | 410           | Hemlock/balsam-poor           | 80     | 75     |  |
| 311  | Hemlock/balsam-low            | 80      | 411           | Hemlock/balsam-low            | 80     | 80     |  |
| 312  | Spruce-good                   | 60      | 412           | Spruce-good                   | 60     | 60     |  |
| 313  | Spruce-medium                 | 75      | 413           | Spruce-medium                 | 75     | 75     |  |
| 314  | Spruce-poor                   | 120     | 414           | Spruce-poor                   | 120    | 145    |  |
| 315  | Ex Dispersed Retention        | 150     | 415           | Ex Dispersed Retention        | 80     | 80     |  |

Managed stands tend to have shortened minimum harvest ages because of the increased yields predicted by the TIPSY model and the site index adjustment (increase) that was applied to Hw and Cw leading stands.

## 6.2 Harvest Priorities / Target Weightings

Traditional harvest priorities are not being applied in this analysis. The model being utilized (Patchworks) is a goal seeking heuristic model which dynamically explores many potential solutions in an effort to find the one that best meets user defined goals. Thus, the concept of harvest priorities is not relevant.

Within a goal seeking heuristic model, it is necessary to weight various targets or objectives relative to each other so that solutions reflect the desired outcome. In this analysis, the harvest volume target will be weighted substantially lower than all other targets so that non timber objectives will not be sacrificed to deliver volume. The objective is for harvest volume only to be attractive to the model when all other issues have been addressed (old seral objectives, ungulate winter range objectives, watershed disturbance limits, etc).

Patchworks generates millions of alternative solutions and scores them for how well they achieve the users objectives. As long as the model continues to find better solutions, modeling continues. For this analysis, solutions will be considered final once improvements in the objective function are less than 0.1% in 100,000 iterations.

## 6.3 Harvest Profiles

The TSR2 determination specified a partition for poor-low hemlock/balsam leading stands (SI<17) and performance monitoring objectives for outer coast stands and non conventional harvest stands. Based on the AAC established in the determination (998,000 m<sup>3</sup>/yr), at least 200,000 m<sup>3</sup>/yr (20%) was expected to come from low and poor site hemlock and balsam stands. In addition, at least 59,000 m<sup>3</sup>/yr (5.9%) was expected to come from Outer Coast stands and 178,000 m<sup>3</sup>/yr (17.8%) was expected to come from non-conventional harvest areas. As a single stand could belong to all three of these profiles, overlap between them is expected. The AAC reduction that occurred in 2006 proportionately reduced the partition volumes as well (% stayed the same).

For TSR 3 modeling, the amount of harvest in these profiles will be monitored and regulated as necessary to ensure that harvest volumes were not inordinately dependent on these types in any one harvest period. Actual licensee annual reporting submissions to MFR are presented below to illustrate recent performance (Table 38).

Table 38. Recent harvest performance based on licensee annual reporting submissions to MFR

| Year | Total Harvest<br>(m <sup>3</sup> ) | Outer Coast<br>Harvest<br>(m <sup>3</sup> ) | Outer<br>Coast<br>(%) | Low/Poor<br>Hembal<br>(m <sup>3</sup> ) | Low/Poor<br>Hembal<br>(%) | Volume ACC<br>(m³) |
|------|------------------------------------|---------------------------------------------|-----------------------|-----------------------------------------|---------------------------|--------------------|
| 2000 | 882,586                            | 27,279                                      | 3.1                   | 170,694                                 | 19.3                      | 1,000,000          |
| 2001 | 760,656                            | 6,267                                       | 0.8                   | 191,840                                 | 25.2                      | 998,000            |
| 2002 | 618,962                            | 19,490                                      | 3.1                   | 92,015                                  | 14.9                      | 998,000            |
| 2003 | 295,826                            | 6,348                                       | 2.1                   | 68,178                                  | 23.0                      | 795,000            |
| 2004 | 618,491                            | 80,794                                      | 13.1                  | 108,188                                 | 17.5                      | 795,000            |
| 2005 | 906,438                            | 34,098                                      | 3.8                   | 111,609                                 | 12.3                      | 795,000            |
| 2006 | 546,262                            | 0                                           | 0                     | 118,722                                 | 21.7                      | 768,000            |
| 2007 | 595,282                            | 119,332                                     | 20.0                  | 44,053                                  | 7.4                       | 768,000            |
| 2008 | 421,452                            | 74,782                                      | 17.7                  | 62,266                                  | 14.8                      | 768,000            |

In spite of all the planning uncertainty associated within the TSA in the past 10 vears, performance in the outer coast has been significant with as much as 20% of the harvested volume coming from the area, even though some of the area has not been made available to license holders in the form of chart area – even today some of the Outer Coast has not been assigned to any license holder (but then there are also existing administrative areas have not been utilized). Some of the highest levels of performance have occurred in the last two years (20% in 2007 and 17.7% in 2008). As a result of the new landbase definition reflecting economic operability, new parks, and community forest areas, the area identified as THLB in the outer coast area has the following characteristics:

- It represents 18.9% of the total THLB,
- 75.6% of the area is cedar
- 12.9% of the area is low or poor hemlock
- All of the area was proven to be economic in the economic operability analysis.



Given that not all of the outer coast area is

administratively available for harvest activity because it has not been made available to any

Figure 8. Inner and outer coast landbase definition (TSR2)

license holder in the TSA, and the fact that the outer coast stands included in the THLB are part of an economic landbase – the base case will be allowed to have up to 20% of harvest come from the outer coast.

Harvesting in the low/poor site hemlock-balsam partition (SI<17) also represents a significant component of the past harvest; between 7.4 and 25.2 percent, frequently greater than 20%. This is consistent with the TSR2 partition of 20% so this level of contribution will be used again in TSR3.

Non-conventional harvest areas as identified in TSR2 will not be duplicated in TSR3 but an effort will be made to track helicopter harvest volumes over time as defined in the 2009 Mid Coast Operability Project.

# 7.0 Natural Forest Disturbance

It is inevitable that natural disturbances will occur within the forests of the Mid Coast TSA and the implications of these disturbances on forest age classes and volumes are recognized in the timber supply analysis process. Natural disturbances are events caused by factors such as wildfire, wind, landslides, snow press, insects, disease and other forest health considerations. Two approaches to addressing these issues are used during modeling; one on the THLB and one on the remainder of the forested area of the TSA.

## 7.1 Unsalvaged Losses on the THLB

The purpose of this section is to quantify the average annual volume of timber that, in the future, will be damaged or killed on the THLB and not salvaged or accounted for by other factors. This factor is meant to capture catastrophic natural events like fires. Endemic pest losses are dealt with through factors applied in the growth and yield models as noted below:

**TIPSY:** Operational Adjustment Factor 2 reduces gross volumes to account for losses toward maturity such as decay, and endemic forest health issues like minor infestations.

**VDYP:** The model predicts actual average yields from appropriate inventory ground plots. Endemic losses are inherently recognized in the model data.

Expected non-recoverable losses are summarized in Table 39 and have not changed since TSR2, other than to prorate them down based on the size of the THLB change. The THLB in this analysis is ~70% of the TSR2 THLB so all NRL values have been reduced to 70% of the TSR2 values. This volume was added to the annual harvest target in order to remove this volume from the land base and cause an appropriate amount of stand area to have its age set to zero. The unsalvaged loss volume is not included in reported harvest levels for the TSA.

| Cause of Loss | TSR2 Annual<br>Unsalvaged Losses<br>(m³/yr) | TSR3 Annual<br>Unsalvaged Losses<br>(m³/yr) |  |  |
|---------------|---------------------------------------------|---------------------------------------------|--|--|
| Insects       | 0                                           | 0                                           |  |  |
| Fire          | 7,102                                       | 4,971                                       |  |  |
| Windthrow     | 13,000                                      | 9,100                                       |  |  |
| Total         | 20,102                                      | 14,071                                      |  |  |

Table 39. Non-recoverable losses

It should be noted that a decline in yellow cedar (Yc) stands has been observed along the BC coast since 2004 at specific elevation bands. It is believed to be an endemic issue but is not recognized in the VDYP yield

curves. Insufficient data exists to quantify its impact for inclusion in the unsalvaged losses estimate but it should be considered as an unquantifiable factor at the time of AAC determination.

## 7.2 Disturbance in the Non-THLB

As forested stands in the non-THLB contribute toward several forest cover objectives (i.e., landscape level biodiversity, visuals, etc.), it is important that the age class distributions in these stands remain consistent with natural processes. By implementing disturbance in these stands, a natural age class distribution can be maintained in the model and a realistic contribution toward seral goals ensured.

The disturbance rate was based on the Range of Natural Variation (RONV) research that is incorporated into the EBM orders (2009). This was necessary to keep the rate of natural disturbance in sync with the old seral retention goals imposed by the EBM orders. Using old seral goals based on RONV studies while implementing disturbance regimes from the Natural Disturbance Types defined in the Biodiversity Guidebook (MFR 1995) would have made it impossible to meet the old seral objectives on the landbase in the long term – even if no harvesting was occurring. In general, the amount of naturally occurring old seral predicted to be on the landbase was much higher under the RONV approach.

The rate of natural disturbance was calculated for each BEC variant/Site Series Surrogate combination using an estimate of the natural amount of old seral that would have occurred in the past (100% RONV numbers from the EBM orders) and the old age definition. An effective rotation age was calculated from the % old from RONV and the old age (250 yrs) definition (Effective rotation age = old age / (1 – proportion old)). This effective rotation age defines the annual rate of disturbance – and indicates that time it takes for an entire area to have been disturbed once. The results are shown in Table 40 and indicate that the rate of stand replacing natural disturbance in these forests is very low – the more typical dynamic is for single trees to die and create gaps that are subsequently filled in by regeneration.

Where a BEC subzone was not present in the EBM order (ESSF, SBPS, SBS, etc), the traditional BEC/NDT disturbance interval was used. This occurred within Tweedsmuir park for the most part and did not impact any LU/BEC variant combinations that contained THLB area.

Once an effective rotation age is known it is then used to define an annual area of disturbance. For example, the CWH vh2 variant is expected to have 97% of its area older than 250 years under natural conditions. This translates into an effective rotation of 7946 years. With 189,124 ha in this variant, it would take 24 ha to be disturbed each year to turn over the entire area within 7946 yr. Because of this very long duration, we would expect stands to renew themselves internally through gap replacement strategies, but the 24 ha per year of stand replacement was also modeled.

The area target was achieved in the modeling by randomly selecting stands (without replacement) to be disturbed in each period and then hardwiring this into the model. Stands of all ages had equal opportunity to be disturbed.

| BEC | Variant  | NDT | Disturbance<br>Interval (yrs) | "OLD"<br>Defn<br>(yrs) | % Area ><br>OLD* | Effective<br>Rotation Age<br>(yrs)** | Contributing<br>Non-THLB<br>Area (ha) | Annual Area<br>Disturbed (ha)<br>(area / rot age) |
|-----|----------|-----|-------------------------------|------------------------|------------------|--------------------------------------|---------------------------------------|---------------------------------------------------|
| MH  | MH wh 1  | 1   | RONV                          | 250                    | 97%              | 8,333                                | 2,922                                 | 0                                                 |
| MH  | MH mm 1  | 1   | RONV                          | 250                    | 86%              | 1,830                                | 23,209                                | 13                                                |
| MH  | MH mm 2  | 1   | RONV                          | 250                    | 84%              | 1,540                                | 37,172                                | 24                                                |
| CWH | CWH vh 1 | 1   | RONV                          | 250                    | 97%              | 7,856                                | 16,097                                | 2                                                 |
| CWH | CWH vh 2 | 1   | RONV                          | 250                    | 97%              | 7,946                                | 189,124                               | 24                                                |
| CWH | CWH vm 1 | 1   | RONV                          | 250                    | 88%              | 2,043                                | 119,995                               | 59                                                |
| CWH | CWH vm 2 | 1   | RONV                          | 250                    | 89%              | 2,189                                | 64,636                                | 30                                                |
| CWH | CWH vm 3 | 1   | RONV                          | 250                    | 84%              | 1,591                                | 30,242                                | 19                                                |
| CWH | CWH ds 2 | 2   | RONV                          | 250                    | 68%              | 790                                  | 25,068                                | 32                                                |

Table 40. Calculation of area to be disturbed annually in forested non-THLB by BEC(variant)/NDT

| CWH   | CWH ms 2 | 2 | RONV | 250 | 74% | 979   | 64,292  | 66    |
|-------|----------|---|------|-----|-----|-------|---------|-------|
| CWH   | CWH ws 2 | 2 | RONV | 250 | 85% | 1,616 | 57,414  | 36    |
| ESSF  |          | 2 | 200  | 250 | 29% | 350   | 82,622  | 236   |
| MS    |          | З | 150  | 140 | 39% | 231   | 15,308  | 66    |
| SBPS  |          | З | 100  | 140 | 25% | 186   | 56,732  | 305   |
| SBS   |          | 3 | 125  | 140 | 33% | 208   | 83,106  | 400   |
| IDF   |          | 4 | 250  | 250 | 37% | 395   | 19,954  | 50    |
| Total |          |   |      |     |     |       | 890,489 | 1,361 |

\* From RONV or calculated: % area old = exp (-[old age / disturbance interval]), \*\* Effective rotation age = old age / (1 - % area old)

## 8.0 Integrated Resource Management

This section of the document describes the range of timber and non-timber management objectives that occur within the Mid Coast TSA and how they will be addressed in the timber supply model. The most common method of inclusion is through the application of forest cover requirements.

Forest cover requirements can:

- Limit disturbance in an area by limiting the amount of forest that can be younger than a specific age (or shorter than a specific height);
- Maintain specific stand types on the land base by ensuring that at least a specified amount of forest older than a certain age (or taller than a certain height) is retained at all times;

Forest cover requirements from several different resource objectives can occur in a common area and result in overlapping constraints within the TSA (e.g. visual constraints inside a community watershed). Each requirement is evaluated independently to ensure that the harvesting of a specific stand does not violate any forest cover requirements.<sup>18</sup>

A summary of all non timber management issues and modeling approaches is provided in Table 41 below. Detail on each can be found in either the netdown section of this document or in the remainder of this section.

| Resource Issue          | Modeling Approach                                                                                                                                                                                                                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cutblock Size/Adjacency | Maximum of 25% < 3m tall. Applied to the THLB within each LU using height curves specific to each AU.                                                                                                                                |
| Visuals                 | Preservation and Retention VQO's: Dispersed retention silviculture system modeled in place of maximum disturbance limits.                                                                                                            |
|                         | Partial Retention and Modification VQO's: Maximum disturbance limits applied by VQO<br>and VAC to PFLB portion of each VEG polygon. VEG height defined by avg slope of VQO<br>polygon.                                               |
| Community Watersheds    | Maximum of 1% of forested area logged / year (10% every 10 yrs).                                                                                                                                                                     |
| Black Tailed Deer       | Minimum of 25% > 141 yrs old within 80 yrs for all LU's. Specific LU's have reduced constraints to be applied for first 80 yrs (either 20%>141 yrs or 20%>121 yrs). To be met within the PELB of the mapped babitat areas in each LU |
| Mountain Goat           | Reserve 90% of identified habitat areas (see netdown section 3.3.9).                                                                                                                                                                 |
| Grizzly Bear WHAs       | Reserve legally established WHA's (see netdown section 3.3.8).                                                                                                                                                                       |
| Sandhill Crane WHAs     | To be addressed with 1% IWMS budget at time of determination.                                                                                                                                                                        |
| Marbled Murralet WHAs   | To be addressed with 1% IWMS budget at time of determination.                                                                                                                                                                        |
| Tailed Frog WHA's       | To be addressed with 1% IWMS budget at time of determination.                                                                                                                                                                        |
| Goshawk WHA's           | To be addressed with 1% IWMS budget at time of determination.                                                                                                                                                                        |

Table 41. Summary of Management Issues and Modelling Assumptions

<sup>&</sup>lt;sup>18</sup> Where a minimum amount of forest is required and does not exist, some harvesting may still occur if there are any stands old enough for harvest once the oldest available stands have been set aside to meet the objective.

| Resource Issue                  | Modeling Approach                                                                                       |  |  |  |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Karst                           | Assumed to be addressed within the existing netdowns and/or the stand level retention budget (Obj. 16). |  |  |  |  |  |  |
| Recreation                      | Spatial netdown - see section 3.3.11.                                                                   |  |  |  |  |  |  |
| EBM Obj. 3: FN Traditional      | 1,500 m <sup>3</sup> /yr assumed to be harvested outside of the AAC - added as NRL volume.              |  |  |  |  |  |  |
| Forest Resources                |                                                                                                         |  |  |  |  |  |  |
| EBM Obj. 4: FN Traditional      |                                                                                                         |  |  |  |  |  |  |
| Heritage Features               | Together, all four objectives are assumed to have a incremental 1.3% impact on THI B                    |  |  |  |  |  |  |
| EBM Obj. 5: Culturally Modified | This is in additional to the stand level retention and red/blue listed species impacts                  |  |  |  |  |  |  |
| Trees                           | discussed below and all other spatial netdowns. Implemented as an aspatial area                         |  |  |  |  |  |  |
| EBM Obj. 6: Monumental          | retention factor in all THI B polygons.                                                                 |  |  |  |  |  |  |
| Cedar                           |                                                                                                         |  |  |  |  |  |  |
| EBM Obj. 7: Stand Level         |                                                                                                         |  |  |  |  |  |  |
| Retention of Cw/Yc              |                                                                                                         |  |  |  |  |  |  |
| EBM Obj. 8: Important           | ECA values assessed on the forested portion of each watershed identified in the SCC and                 |  |  |  |  |  |  |
| Fisheries watersheds            | NCC Order Schedules. ECA limited to a maximum of 20%. Recovery curves from the                          |  |  |  |  |  |  |
| EDM Obi Or Lligh Value Fish     | 1999 CWAP guidebook were used (function of stand ht).                                                   |  |  |  |  |  |  |
| EBM Obj. 9. High Value Fish     | Spallar heldown - see section 3.3.12.1.                                                                 |  |  |  |  |  |  |
|                                 | Spatial nationum and partian 2.2.12.2                                                                   |  |  |  |  |  |  |
| Aquatic Habitat                 | Spallar heldown - see section 3.3. 12.2.                                                                |  |  |  |  |  |  |
| FBM Obi 11: Forested            | Assumed to be addressed within the stand level retention budget (Obi. 16) section                       |  |  |  |  |  |  |
| Swamps                          |                                                                                                         |  |  |  |  |  |  |
| EBM Obi. 12: Upland Streams     | FRPA riparian removed spatially (netdown section 3.3.10) plus the forested portion of the               |  |  |  |  |  |  |
|                                 | upland stream area in each watershed was limited to 30% < 9m tall (i.e. hyrdologically                  |  |  |  |  |  |  |
|                                 | recovered).                                                                                             |  |  |  |  |  |  |
|                                 | SCC Order: applied only in watersheds identified in Schedule 3 (Important Fisheries)                    |  |  |  |  |  |  |
|                                 | NCC Order: applied in all watersheds (Important Fisheries + MoE 3 <sup>rd</sup> Order WS's).            |  |  |  |  |  |  |
| EBM Obj. 13: Active Fluvial     | Spatial netdown - see section 3.3.12.4.                                                                 |  |  |  |  |  |  |
| Units                           |                                                                                                         |  |  |  |  |  |  |
| EBM Obj. 14: Landscape Level    | A minimum amount of old forest was retained in the productive forest of each LU/SSS                     |  |  |  |  |  |  |
| Biodiversity                    | combination. Amounts were specified in Schedule 4 of the EBM orders. The amount of                      |  |  |  |  |  |  |
|                                 | mid seral forest in each LU/SSS combination was also limited to 50%.                                    |  |  |  |  |  |  |
| EBM Obj. 15: Red/Blue Listed    | Assumed to have a net 3% impact on THLB. Implemented as an aspatial area retention                      |  |  |  |  |  |  |
| Plant Communities               | factor in all THLB polygons (section 8.5.13).                                                           |  |  |  |  |  |  |
| EBM Obj. 16: Stand Level        | The 15% requirement is assumed to have a net 4.4% impact on THLB. Combined with                         |  |  |  |  |  |  |
| Retention                       | the FIN EBM objectives, EBM Red/Blue Impact, and So riparian Impact, the total stand                    |  |  |  |  |  |  |
|                                 | retention factor in all THLP polygons (section 8.5.14). An additional 10% was retained in               |  |  |  |  |  |  |
|                                 | notworns managed using dispersed retention                                                              |  |  |  |  |  |  |
| EBM Obi 17: Grizzly Bear        | Spatial netdown - see section 8 5 15                                                                    |  |  |  |  |  |  |
| Habitat                         |                                                                                                         |  |  |  |  |  |  |

Non timber objectives addressed through forest cover constraints are discussed in detail below.

## 8.1 Cutblock Size and Adjacency

Green-up requirements specify that a logged block must achieve a specific condition called green-up before adjacent areas can be logged. Green-up refers to the average height of the regenerating forest reaching a specified target. Green-up requirements can often be waived if licensees manage for patch size distributions consistent with biodiversity objectives as described in the Landscape Unit Planning Guide (MFR/MoE 1999). Modeling of green-up requirements was done using forest level objectives, as opposed to block specific objectives, because this was consistent with the operational flexibility afforded by patch size management.

The amount of THLB area less than 3m in height was limited to 25% within each landscape unit (refer to Table 42). This is consistent with the objective applied in TSR 2.

Table 42. Green-up requirements

| Management Zone                        | Green-up<br>Requirement | Modeled Green-up<br>Constraint | Area to which it applies |
|----------------------------------------|-------------------------|--------------------------------|--------------------------|
| Integrated Resource<br>Management Zone | 3 m tall trees          | Max 25% < 3m within each<br>LU | THLB area within each LU |

### 8.2 Visual resources

The management of visual resources is based on legally established Visual Quality Objectives (VQO's) assigned to specific areas of the land base. The four VQO ratings considered in this analysis were preservation (P), retention (R), partial retention (PR), and modification (M). Dispersed retention harvesting was implemented in all Preservation and Retention VQO polygons (with associated harvest yield reductions) in order to address the visual concerns on these units. No further constraints were applied to these VQO polygons.

Partial Retention and Modification VQO's had maximum allowable disturbance percentages applied as per Table 43 below. These values reflect higher allowable disturbance limits when VQO polygons have high Visual Absorption Capability (VAC) ratings.

| VQO | Maximum allowable disturbance (%) |        |         |  |  |  |  |  |  |
|-----|-----------------------------------|--------|---------|--|--|--|--|--|--|
|     | VAC = L                           | VAC= M | VAC = H |  |  |  |  |  |  |
| Р   | 0.0%                              | 0.5%   | 1%      |  |  |  |  |  |  |
| R   | 1%                                | 3%     | 5%      |  |  |  |  |  |  |
| PR  | 5%                                | 10%    | 15%     |  |  |  |  |  |  |
| М   | 15%                               | 20%    | 25%     |  |  |  |  |  |  |

Visually effective green-up (VEG) height requirements vary by slope class as per Table 44. An average slope class was calculated for each VQO-VAC polygon. The average slope defines the required tree height (and age) to reach visually effective greenup. This VEG height was used to model height based disturbance limits within each VQO polygon. Age to reach greenup heights were derived for each AU and used in the model.

Table 44. Visually Effective Green-up (VEG) heights and ages by slope class

| Slope (%)   | 0-5 | 6-10 | 11-15 | 16-20 | 21-25 | 26-30 | 31-35 | 36-45 | 46-50 | 51-55 | 56-60 | 60+ |
|-------------|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| Tree Ht (m) | 3   | 3.5  | 4     | 4.5   | 5     | 5.5   | 6     | 6.5   | 7     | 7.5   | 8     | 8.5 |
| Derived Age | 6   | 7    | 9     | 10    | 11    | 13    | 14    | 15    | 16    | 17    | 18    | 19  |

The area impacted by visual constraints is summarized below.

Table 45. Areas with visual quality objectives

| VQO   | VAC | Forested<br>Non THLB Area (ha) | THLB Area<br>(ha) | Total PFLB Area<br>(ha) |
|-------|-----|--------------------------------|-------------------|-------------------------|
|       | L   | 531                            | 197               | 729                     |
| Р     | М   | 49                             | -                 | 49                      |
|       | Н   | -                              | -                 | -                       |
|       | L   | 16,110                         | 3,948             | 20,057                  |
| R     | М   | 7,573                          | 1,250             | 8,823                   |
|       | Н   | 142                            | 43                | 186                     |
|       | L   | 33,506                         | 9,202             | 42,708                  |
| PR    | М   | 29,854                         | 8,018             | 37,873                  |
|       | Н   | 1,483                          | 249               | 1,732                   |
|       | L   | 21,851                         | 9,345             | 31,196                  |
| M     | М   | 32,083                         | 8,701             | 40,784                  |
|       | Н   | 2,702                          | 682               | 3,384                   |
| Total |     | 145,886                        | 41,634            | 187,520                 |

## 8.3 Community Watersheds

Community watersheds are managed by limiting the amount of disturbance that can occur in each year. As in TSR 2, harvesting will be limited to a maximum of 1% of the forested area per year – modeled as a maximum 10% per decade. This translates into the following maximum annual harvests shown in Table 46.

| Community Watershed     | Total Area<br>(ha) | PFLB Area<br>(ha) | THLB Area<br>(ha) | 1% of PFLB<br>Area (ha) | 10% of PFLB<br>Area (ha) |
|-------------------------|--------------------|-------------------|-------------------|-------------------------|--------------------------|
| 910.001                 | 25                 | 20                | -                 | 0.2                     | 2                        |
| 910.003 (Martin River)  | 2,204              | 718               | 106               | 7.2                     | 72                       |
| 910.004 (Snootli Crk)   | 3,847              | 657               | 103               | 6.6                     | 66                       |
| 910.005 (Tastsquan Crk) | 2,795              | 668               | 47                | 6.7                     | 67                       |
| CAM.001                 | 227                | 100               | 39                | 1.0                     | 10                       |
| Total                   | 9,097              | 2,163             | 295               |                         |                          |

Table 46. Harvest limits applied to community watersheds

### 8.4 Black Tailed Deer Winter Range

In February 2007, a GAR order was introduced for black tailed deer in the Mid Coast TSA (U-5-005) and it identified specified areas where habitat requirements must be met. Since these cover requirements reflect current management of deer winter range in this TSA, they were applied in the base case. Modeling applied a cover constraint to the specified area in each LU as per the GAR order. Table 47 summarizes the cover constraints applied.

| Table 47. | Summary of | of cover | constraints | for Black | Tailed Dee | r by Land | lscape Unit |
|-----------|------------|----------|-------------|-----------|------------|-----------|-------------|
|-----------|------------|----------|-------------|-----------|------------|-----------|-------------|

| Landscape Unit                                         | Minimum Mature Forest<br>Cover Requirements for first<br>80 years | Minimum Mature Forest<br>Cover Requirements<br>after 80 years |
|--------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|
| Kilbella/Chuckwalla, Sumquolt, Lower Kimsquit          | 20% ≥ 141 years                                                   | 25% ≥ 141 vears                                               |
| Clayton, Machmell, Nusatsum, Salloompt, Sheemahant,    |                                                                   |                                                               |
| South Bentinck, Smitley/Noeick, Taleomey/Asseek, Upper | 20% ≥ 121 years                                                   | (Implemented in year 40 to                                    |
| Kimsquit, Clyak                                        |                                                                   | ensure target is met by                                       |
| All other LU's                                         | 25% ≥ 141 years                                                   | year 80)                                                      |

\* Order also indicates that the crown closure must be  $\geq$  56% and  $\leq$ 85% and have a leading species of either Douglas-fir, Sitka spruce, or hemlock. It was not possible to assess crown closure or leading species as part of constraints in the model.

The areas impacted by black tailed deer constraints are shown below in Table 48.

Table 48. Areas impacted by black tailed deer cover constraints

| Landscape Unit      | Forested | THLB Area | PFLB Area |
|---------------------|----------|-----------|-----------|
| Аре                 | 0.2      | 0         | 0.2       |
| Atnarko             | 4        | 0         | 4         |
| Bella Coola         | 595      | 256       | 851       |
| Braden              | 2,490    | 982       | 3,472     |
| Clayton             | 311      | 262       | 573       |
| Clyak               | 1,069    | 2,405     | 3,474     |
| Crag                | 478      | 0         | 478       |
| Dean                | 2,668    | 264       | 2,931     |
| Don Peninsula       | 714      | 954       | 1,668     |
| Doos/Dallery        | 412      | 227       | 639       |
| Draney              | 394      | 455       | 849       |
| Ellerslie           | 2,480    | 763       | 3,243     |
| Evans               | 46       | 42        | 89        |
| Johnston            | 24       | 24        | 47        |
| Jump Across         | 1,230    | 104       | 1,333     |
| Kilbella/Chuckwalla | 1,616    | 903       | 2,519     |
| Kilippi             | 3        | 41        | 44        |
| King Island         | 1,618    | 1,343     | 2,961     |
| Kwatna/Quatlena     | 1,341    | 1,105     | 2,446     |

| Landscapo Unit     | Forested      | THLB Area | PFLB Area |
|--------------------|---------------|-----------|-----------|
|                    | Non THLB (ha) | (ha)      | (ha)      |
| Labouchere         | 1,915         | 749       | 2,664     |
| Lower Kimsquit     | 2,103         | 1,626     | 3,728     |
| Machmell           | 758           | 711       | 1,470     |
| Nascall            | 1,703         | 109       | 1,812     |
| Neechanz           | 425           | 421       | 846       |
| Nekite             | 2,431         | 1,084     | 3,514     |
| Nootum/Koeye       | 3             | 0         | 3         |
| Nusatsum           | 181           | 0         | 181       |
| Owikeno            | 1,394         | 354       | 1,747     |
| Roscoe             | 2,283         | 270       | 2,553     |
| Saloompt           | 885           | 821       | 1,705     |
| Sheemahant         | 1,213         | 1,296     | 2,509     |
| Sheep Passage      | 3,854         | 609       | 4,462     |
| Smitley/Noeick     | 240           | 510       | 750       |
| Smokehouse         | 1,834         | 930       | 2,764     |
| South Bentinck     | 44            | 0         | 44        |
| Sumquolt           | 927           | 146       | 1,073     |
| Sutslem/Skowquiltz | 2,859         | 116       | 2,975     |
| Swindle            | 318           | 14        | 332       |
| Taleomey/Asseek    | 226           | 285       | 511       |
| Twin               | 438           | 320       | 758       |
| Upper Kimsquit     | 1,845         | 1,273     | 3,117     |
| Washwash           | 672           | 53        | 724       |
| Young              | 26            | 0         | 26        |
| Total              | 46,067        | 21,823    | 67,890    |

## 8.5 Ecosystem Based Management (EBM) Objectives

Land use orders have been made legal for the South Central Coast and Central and North Coast (March 27, 2009). These orders define land use objectives that implement Ecosystem Base Management (EBM) on the central and north coast of BC and both apply to portions of the Mid Coast TSA (Figure 3 and Table 49). The integration of these objectives into the Mid Coast TSR3 process is discussed in the following sections. The full legal text of the EBM orders can be found here:

http://ilmbwww.gov.bc.ca/slrp/lrmp/nanaimo/cencoast/plan/objectives/index.html

Table 49. Ministerial order areas for the Mid Coast TSA

| Ministerial<br>Order Area | Forested<br>non THLB (ha) | THLB *<br>(ha) | Total Productive<br>Forest (ha) |
|---------------------------|---------------------------|----------------|---------------------------------|
| CNC                       | 471,182                   | 95,463         | 566,646                         |
| SCC                       | 419,306                   | 39,879         | 459,185                         |
| Total                     | 890,489                   | 135,343        | 1,025,831                       |

\* Spatial THLB area and does not include TL reversions.

It should be noted that proposed amendments to these EBM Orders were made public in December 2008 and were open to review and comment until Feb 16, 2009. These amendments are recognized here as the current practice in the TSA.

#### 8.5.1 EBM Objective 3 – First Nations Traditional Forest Resources

The intent of this objective is to provide for the maintenance of forest resources traditionally used by First Nations for food, social, or ceremonial purposes. This can include merchantable timber and based on the fact that First Nations can access volume without paying stumpage through Free Use Permits. For the six bands within the TSA (Gwa'sala-'Nakwaxda'xw, Heiltsuk, Kitasoo, Nuxalk, Ulkatcho and Wuikinuxv) a total of 1,500 m<sup>3</sup>/year was assumed to be harvested within the THLB and in excess of the approved AAC. Additonal volume may also be logged in non THLB areas (parks, riparian, etc) but this does not need to be reflected in the anlaysis. The volume expected to be removed from the THLB was added to the non recoverable losses and

logged in the model on top of the AAC request. This volume also helps to address EBM Objectives 6 and 7 below.

#### 8.5.2 EBM Objective 4 – First Nations Traditional Heritage Features

"The intent of this objective is to provide for the protection of defined First Nation's traditional heritage features that are of continued importance to the First Nation within areas proposed for forest development activities. The objective directs licensees to share information and work with First Nations to protect traditional heritage features." (SCC and CNC Background and Intent Document – April 18 2008)

This objective was addressed through non-spatial netdowns to the THLB (see section 3.4.1). Non spatial netdowns were used because they represent a portion of each of the polygon used during modeling.

#### 8.5.3 EBM Objective 5 – Culturally Modified Trees

"The intent of this objective is to provide for the identification and protection of culturally modified trees that are of continuing importance to First Nations. The objective directs licensees to share information and work with First Nations to identify and protect culturally modified trees within area proposed to be altered or harvested and to reserve culturally modified tree areas where practicable." (SCC and CNC Background and Intent Document – April 18 2008)

This objective was addressed through non-spatial netdowns to the THLB (see section 3.4.1).

#### 8.5.4 EBM Objective 6 – Monumental Cedar

"The intent of this objective is to provide for the maintenance of monumental cedar for First Nations use. The South Central Coast objective directs licensees to share information and collaborate with First Nations to maintain a sufficient volume of monumental cedar to support present and future cultural use. The Central and North Coast objective directs licensees to share information and work with First Nations to identify and protect monumental cedar within areas proposed to be altered or harvested and to reserve monumental cedar areas where practicable." (SCC and CNC Background and Intent Document – April 18 2008)

This objective was addressed through non-spatial netdowns to the THLB (see section 3.4.1).

#### 8.5.5 EBM Objective 7 – Stand Level Retention of Cw/Yc

"The intent of this objective is to ensure sufficient Western red and Yellow cedar is maintained to support First Nation's present and future cultural and social uses." (SCC and CNC Background and Intent Document – April 18, 2008)

This objective was addressed through non-spatial netdowns to the THLB (see section 3.4.1).

#### 8.5.6 EBM Objective 8 – Important Fisheries Watersheds

The intent of this objective is to ensure forest development activities do not negatively impact watershed health and/or fish habitat in important fisheries watersheds. Important fisheries watersheds are identified in Schedule 2 of the SCC Order and Schedule 3 of the CNC Order, but are not meant to capture small watersheds composed of S5 and S6 streams flowing directly into the ocean. Identified Important Fisheries Watersheds are to be managed using the concept of Equivalent Clearcut Area (ECA) and hydrologic greenup to limit the amount of

disturbance within these watersheds. When evaluated on the forested portion of each watershed area, ECA's are to be kept at <20%. For TSR3 modeling, stands are assumed to recover as per the recovery curve shown below. This curve was adapted from the Coastal Watershed Assessment Procedures Guidebook (v2.1 Apr 1999).



May 10, 2010

The graph shows that as long as disturbed areas are below 3m in height, they are considered 100% 'clearcut' while only 50% of an area with a height of 5m is considered 'clearcut'.

Modeling applied a maximum 20% ECA to the forested portion of each watershed in Schedule 2 of the SCC Order and Schedule 3 of the CNC Order. Stand height curves assigned to each stand type (AU) were used to calculate ECA percents dynamically in each period for comparison to the target. The areas impacted by Important Fisheries Watershed constraints are shown below (Table 50).

Table 50. Areas impacted by Important Fisheries Watershed constraints

| Ministerial Order Area | Forested<br>Non THLB (ha) | THLB<br>(ha) | PFLB Area<br>(ha) |
|------------------------|---------------------------|--------------|-------------------|
| CNC                    | 228,544                   | 53,853       | 282,397           |
| SCC                    | 95,057                    | 13,283       | 108,340           |
| Total                  | 323,601                   | 67,136       | 390,737           |

#### 8.5.7 EBM Objective 9 – High Value Fish Habitat (HVFH)

HVFH was treated as a spatial netdown from the THLB (see section 3.3.12.1)

#### 8.5.8 EBM Objective 10 – Aquatic Non High Value Fish Habitat

Aquatic Non-HVFH was treated as a spatial netdown from the THLB (see section 3.3.12.2)

#### 8.5.9 EBM Objective 11– Forested Swamps

The intent of this objective is to maintain the natural ecological function of forested swamps by managing forests that occur adjacent to these areas. As these are rare in coastal BC, it has been assumed that they can be addressed within the impacts attributed to stand level retention strategies (see section 3.3.12.3).

#### 8.5.10 EBM Objective 12 – Upland Streams

The intent of this objective is to maintain the natural ecological function of upland streams and to provide for the maintenance of hydrological and ecological processes within specific watersheds. The objective does not require management of every small upland stream, but does require that functional riparian forest exist on at least 70% of upland portions of watersheds.

Upland streams are to be managed in watersheds identified in Schedule 2 of the SCC order and all watersheds (min 3<sup>rd</sup> order) in the CNC order. Watershed boundaries beyond those mapped in Schedule 3 for the CNC area were obtained from: <u>ftp://ftpnan.env.gov.bc.ca/pub/outgoing/dist/Coast Implementation/EBM WG/Data/watersheds/</u> and represent 3rd order or larger watersheds.

Within the relevant watersheds, sufficient functional riparian forest was maintained in upland portions of the watersheds by allowing a maximum of 30% of the upland forest area to be below the hydrologically effective greenup height of 9 m. This height comes from the Coastal Watershed Assessment Procedure guidebook which states that 9 meter tall stands are assumed to be 90% hydrologically recovered (maximum recovery shown in the table).

Upland forest is the portion of the watershed occupied by upland streams. For the analysis this was assumed to be forested areas with a >5% slope outside HVFH, Aquatic Non HVFH, and Active Fluvial areas. This amounted to 97,542 ha in the SCC and 397,925 ha in the CNC (270,539 ha FSW and 127,386 ha other watersheds) as shown in Table 51. This constraint was applied to watersheds with a minimum of 100 ha of upland forest, reducing the original area by 1,735 ha (0.35%), from 495,467 ha to 493,732 ha.

Table 51. Areas managed for upland streams

| Ministerial<br>Order Area | Important<br>Fisheries<br>Watersheds | Forested<br>Non THLB (ha) | THLB<br>(ha) | PFLB Area<br>(ha) |
|---------------------------|--------------------------------------|---------------------------|--------------|-------------------|
| CNC                       | Yes                                  | 216,992                   | 53,547       | 270,539           |

|                   | No                     | 105,004                  | 22,382            | 127,386           |
|-------------------|------------------------|--------------------------|-------------------|-------------------|
|                   | Subtotal               | 321,996                  | 75,929            | 397,925           |
| SCC               | Yes                    | 84,389                   | 13,153            | 97,542            |
| Total             |                        | 406,386                  | 89,082            | 495,467           |
| * The area of the | Important Fisheries Wa | tersheds is smaller that | an in Table 50 be | cause of the slop |

#### 8.5.11 EBM Objective 13 – Active Fluvial Units

This objective is present in both the Central and North Coast Order (CNC) and the South Central Coast Order (SCC). The objective intends to maintain the integrity and natural ecological function of active fluvial units (floodplains). Protection will be achieved though the application of a spatial netdown to the THLB (section 3.3.12.4).

#### 8.5.12 EBM Objective 14 – Landscape Level Biodiversity

The intent of this objective is to ensure that a specified amount of forest is maintained in old seral condition in each ecosystem surrogate (TEM mapping not available) based on the relative rarity of the surrogate and the range of natural variation. The CNC and SCC orders define old forest as a stand of trees 250 years or older. To represent this objective, a constraint was applied that maintained a minimum amount of old forest in each Site Series Surrogate (SSS)<sup>19</sup> by LU as per Schedules 4, 4b, 4c, 4d (SCC) and 4, 4b, 4c (CNC) of the EBM orders. These targets were limited to the units with at least 1 ha of THLB in order to simplify modeling. In LU/SSS units where deficits occurred, recruitment was handled on an oldest first basis (no consideration of land base type). A table of all units with areas and targets can be found in Appendix B. There are likely to be units managed to the "risk-managed" targets but we do not know which ones or when this will occur yet – so the plan is to do a sensitivity analyses with the "risk-managed" targets to get an idea of the level of impact.

In addition, the amount of mid seral forest in each LU/SSS was explicitly limited to 50% using accounts that track this seral stage. Mid seral is defined as:

- CWH: 40-80 years old
- ESSF: 40-120 years old
- MH: 40-120 years old

#### 8.5.13 EBM Objective 15 – Red and Blue Listed Plant Communities

The intent for this objective is to protect and maintain the abundance and distribution of existing rare, threatened and endangered ecosystems. All occurrences of red listed plant communities are to be protected, while at least 70% of blue listed plant communities are to be protected.

This objective was addressed through aspatial netdowns to the THLB (see section 3.4.2)

#### 8.5.14 EBM Objective 16 – Stand Level Retention

The intent of this objective is to maintain forest structure and habitat elements at the stand level. Both the SCC and CNC orders require a minimum of 15% of each cutblock to be retained, where 50% of this retention should be internal to the cutblock if it's over 15 ha.

This issue was addressed though the application of aspatial netdowns to the THLB (see section 3.4.3).

#### 8.5.15 EBM Objective 17 – Grizzly Bear Habitat

The intent of this objective is to support the long term viability of this regionally important species through the establishment of spatial reserves that work toward maintaining grizzly bear habitat.

<sup>&</sup>lt;sup>19</sup> Site Series Surrogate (SSS) are groupings of stand types within BEC variants. There are 13 potential stand groupings that can occur within each BEC variant that are a function of leading species and site index. For example, Stand type#1 = Fd leading with SI > 27.

Protection of identified habitat will be achieved through the application of a spatial netdown to the THLB (see section 3.3.13).

# 9.0 Timber Supply Modeling

## 9.1 Timber Supply Model

For forecasting and analysis, the PATCHWORKS<sup>™</sup> modeling software will be used. This suite of tools is sold / maintained by Spatial Planning Systems Inc. of Deep River, Ontario (Tom Moore - <u>www.spatial.ca</u>).

Patchworks is a fully spatial forest estate model that can incorporate real world operational considerations into a strategic planning framework. It is unique in its ability to dynamically assess spatial relationships during modeling and adapt solutions to achieve spatial objectives. It utilizes a goal seeking approach and an optimization heuristic to schedule activities across time and space in order to find a solution that best balances the targets/goals defined by the user. Targets can be applied to any aspect of the problem formulation. For example, the solution can be influenced by issues such as mature/old forest retention levels, young seral disturbance levels, patch size distributions, conifer harvest volume, growing stock levels, snag densities, CWD levels, ECA's, specific mill volumes by species, road building/hauling costs, delivered wood costs, net present values, etc. Patchworks continually generates alternative solutions until the user decides a stable solution has been found. Solutions with attributes that fall outside of specified ranges (targets) are penalized and the goal seeking algorithm works to minimize these penalties – resulting in a solution that reflects the user's objectives and priorities.

Patchworks' flexible interactive approach is unique in several respects:

- Patchworks' interface allows for highly interactive analysis of trade-off's between competing sustainability goals.
- Patchworks integrates operational-scale decision-making within a strategic-analysis environment: realistic spatial harvest allocations can be optimized over long-term planning horizons. Patchworks can simultaneously evaluate forest operations and log transportation problems using a multiple-product to multiple-destination formulation. The model can identify in precise detail how wood will flow to mills over a complex set of road construction and transportation alternatives.
- Allocation decisions can be made considering one or many objectives simultaneously and objectives can be weighted for importance relative to each other (softer vs. harder constraints).
- Allocation decisions can include choices between stand treatment types (clearcut vs. partial cut, fertilization, rehabilitation, etc).
- Unlimited capacity to represent a problem only solution times limit model size.
- Fully customizable reporting on economic, social, and environmental conditions over time. Reports are built web-ready for easy sharing of analysis results even comparisons of multiple indicators across multiple scenarios.

Because it is up the user to decide when Patchworks should stop searching for a better solution, a specific defined criteria for a 'stable' solution is desirable. This helps ensure that differences between scenario results occur because of model input differences and not from extra effort spent finding a better solution. For the purpose of this project, Patchwork results were accepted once the objective function improved by less than 0.1% in 100,000 iterations.

## 9.2 Harvest Flow Objectives

Harvest flow objectives used during analysis area consistent with MFR policy<sup>20</sup>. The primary objective is to gradually adjust harvest levels, if required, to arrive at the long-term harvest level (LTHL) for the TSA. A wide range of harvest flows are possible but ideally the flows will:

- Achieve an acceptable short-term harvest level beginning at the current AAC whenever possible;
- Where harvest level changes are required, make steps no larger than 10%;

<sup>&</sup>lt;sup>20</sup> Harvest Flow Considerations for the Timber Supply Review" <u>http://www.llbc.leg.bc.ca/public/PubDocs/bcdocs/365082/</u> DFAM harvest flow options.pdf

- A medium-term harvest level below the long-term harvest level should be avoided and if present, minimized.
- Do not permit the mid-term harvest level to fall below a level reflecting the productive capacity of the TSA (natural stand yield estimates); and
- Achieve a maximum long-term stable harvest level over a 300-year time horizon reflecting the productive capacity of the TSA (based on TIPSY yield estimates). One indicator of a stable long-term harvest level will be a constant long-term total inventory (growing stock on the THLB).

## 9.3 Initial Harvest Rate

The base case harvest forecast will use the following initial harvest rates:

Initial Harvest: 768,000 m<sup>3</sup>/yr + 14,071 m3/yr (NRL) + 1,500 m<sup>3</sup>/yr (EBM Obj. 3) = 783,571 m<sup>3</sup>/yr

## 9.4 Long Run Sustained Yield

Long run sustained yield (LRSY) values calculated on the basis of both natural and managed stand yield curves are shown in Table 52. LRSY is a measure of what the land base is capable of producing if only timber production is considered and can be used to assess the level of impact arising from non timber management issues.

| Table 52. | LRSY values | for natural | and managed | stands |
|-----------|-------------|-------------|-------------|--------|
|-----------|-------------|-------------|-------------|--------|

| Description                                       | Stand Type |         |  |
|---------------------------------------------------|------------|---------|--|
| Description                                       | Natural    | Managed |  |
| Current THLB (ha)                                 | 123,162    | 123,162 |  |
| - Future roads (ha)                               | 2,713      | 2,713   |  |
| + TL Reversions                                   | 5,279      | 5,279   |  |
| = Long term THLB (ha)                             | 125,728    | 125,728 |  |
| * Average MAI at culmination (m <sup>3</sup> /ha) | 3.3        | 7.5     |  |
| = Theoretical Gross LRSY (m <sup>3</sup> /yr)     | 414,902    | 942,960 |  |
| - Non-recoverable losses (m <sup>3</sup> /yr)     | 14,071     | 14,071  |  |
| = Theoretical Net LRSY (m <sup>3</sup> /yr)       | 400,831    | 928,889 |  |

## 9.5 Sensitivities and Critical Issues

The following list of sensitivities and critical issue analyses planned:

#### Sensitivities

- 1. Harvest Flows:
  - a. High Initial Harvest Flow
  - b. Non Declining Harvest flow
- 2. Larger THLB (low royalty/stumpage land base)
- 3. Smaller THLB (high royalty/stumpage land base)
- 4. Larger THLB (include all previously logged stands)
- 5. Natural stand yields +- 10%
  - a. Natural stand yields plus 10%
  - b. Natural stand yields minus 10%
- 6. Future dispersed retention modelled as 20% (instead of 10%)
- 7. Minimum Harvest Ages +-10 yrs
  - a. Minimum Harvest Ages plus 10 yrs

- b. Minimum Harvest Ages minus 10 yrs
- 8. Manage Cw Profile (30% for the cedar leading stands)
- 9. Drop Grizzly EBM requirements
- 10. Old seral representation using EBM risk managed targets
- 11. Control partition harvest levels
  - a. Drop the maximum Outer harvest level to 10%
  - b. Suppress harvest in Owikeno watershed: short term areas for 40 year and perpetual for the rest
- 12. Pre EBM Scenarios
  - a. Pre EBM (no changes to parks)
  - b. Pre EBM + 2004 Version of Parks (Tweedmuir, Hakai, Fiordland only)

Actual sensitivity runs completed may vary from this initial plan based on information discovered during the analysis process.

# Glossary

| Allowable annual cut (AAC)              | The rate of timber harvest permitted each year from a specified area of land, usually expressed as cubic meters of wood per year.                                                                                                         |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis unit                           | A grouping of types of forest — for example, by species, site productivity, silvicultural treatment, age, and or location — done to simplify analysis and generation of timber yield tables.                                              |
| Base case harvest forecast              | The timber supply forecast which illustrates the effect of current forest management practices on the timber supply using the best available information, and which forms the reference point for sensitivity analysis.                   |
| Basic sector                            | Sectors of the economy, such as forestry, tourism and mining, which create flows of income into the region and are assumed to be drivers of the local economy.                                                                            |
| Biodiversity (biological diversity)     | The diversity of plants, animals and other living organisms in all their forms and levels of organization, including the diversity of genes, species and ecosystems, as well as the evolutionary and functional processes that link them. |
| Biogeoclimatic (BEC) variant            | A subdivision of a biogeoclimatic subzone. Variants reflect further differences in regional climate and are generally recognized for areas slightly drier, wetter, snowier, warmer or colder than other areas in the subzone.             |
| Biogeoclimatic zones                    | A large geographic area with broadly homogeneous climate and similar dominant tree species.                                                                                                                                               |
| Coniferous                              | Coniferous trees have needles or scale-like leaves and are usually 'evergreen'.                                                                                                                                                           |
| Cutblock                                | A specific area, with defined boundaries, authorized for harvest.                                                                                                                                                                         |
| Cutblock adjacency                      | recently harvested areas must achieve a desired condition (green-up) before nearby<br>or adjacent areas can be harvested. Specifications for the maximum allowable                                                                        |
|                                         | proportion of a forested landscape that does not meet green-up requirements are                                                                                                                                                           |
| Desidered                               | used to approximate the timber supply impacts of adjacency restrictions.                                                                                                                                                                  |
| Deciduous<br>Ecosystem Based Management | An adaptive approach to managing human activities that seeks to ensure the                                                                                                                                                                |
| (EBM)                                   | coexistence of healthy, fully functioning ecosystems and human communities. The                                                                                                                                                           |
|                                         | intent is to maintain those spatial and temporal characteristics of ecosystems such                                                                                                                                                       |
|                                         | that component species and ecological processes can be sustained, and human                                                                                                                                                               |
| Employment coefficient                  | Wellbeing supported and improved.                                                                                                                                                                                                         |
|                                         | timber harvested: for example, a coefficient of 1.0 indicates that every 1,000 cubic                                                                                                                                                      |
|                                         | meters harvested supports one person-year, or 500,000 cubic meters supports 500 person-years.                                                                                                                                             |
| Employment multiplier                   | An estimate of the total employment supported by each direct job, for example a multiplier of 2.0 means that one direct job supports one additional indirect and induced job.                                                             |
| Environmentally sensitive areas (ESA)   | Areas with significant non-timber values, fragile or unstable soils, impediments to establishing a new tree crop, or high risk of avalanches.                                                                                             |
| Forest cover objectives                 | Specify desired distributions of areas by age or size class groupings. These                                                                                                                                                              |
|                                         | objectives can be used to reflect desired conditions for wildlife, watershed protection,                                                                                                                                                  |
|                                         | visual quality and other integrated resource management objectives. General                                                                                                                                                               |
|                                         | (see cutblock adjacency and Green-up).                                                                                                                                                                                                    |
| Forest inventory                        | An assessment of British Columbia's timber resources. It includes computerized                                                                                                                                                            |
|                                         | maps, a database describing the location and nature of forest cover, including size,                                                                                                                                                      |
|                                         | age, timber volume, and species composition, and a description of other forest values                                                                                                                                                     |
| Forest and Range Practices Act          | Legislation that govern forest practices and planning, with a focus on ensuring                                                                                                                                                           |
| (FRPA)                                  | management for all forest values.                                                                                                                                                                                                         |
| Forest type                             | The classification or label given to a forest stand, usually based on its tree species                                                                                                                                                    |
|                                         | composition. Pure spruce stands and spruce-balsam mixed stands are two examples.                                                                                                                                                          |
| Free-growing                            | An established seedling of an acceptable commercial species that is free from                                                                                                                                                             |
| Croop up                                | growth-inhibiting brush, weed and excessive tree competition.                                                                                                                                                                             |
| Green-up                                | The time needed after harvesting for a stand of trees to reach a desired condition (usually a specific height) — to ensure maintenance of water quality, wildlife babitat                                                                 |
|                                         | soil stability or aesthetics — before harvesting is permitted in adjacent areas.                                                                                                                                                          |

| Growing stock                          | The volume estimate for all standing timber at a particular time.                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Harvest forecast                       | The flow of potential timber harvests over time. A harvest forecast is usually a                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | measure of the maximum timber supply that can be realized over time for a specified                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | and is affected by the size and productivity of the land base, the current growing                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | stock, and management objectives, constraints and assumptions.                                                                                                                                                                                                                                                                                                                                                                                             |
| Higher level plans                     | Higher level plans establish the broader, strategic context for operational plans,                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | providing objectives that determine the mix of forest resources to be managed in a                                                                                                                                                                                                                                                                                                                                                                         |
| Indirect and induced jobs              | Indirect jobs are supported by direct business purchases of goods and services                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | Induced jobs are supported by employee purchases of goods and services; for                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | example, at retail outlets.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Inoperable areas                       | Areas defined as unavailable for harvest for terrain-related or economic reasons.                                                                                                                                                                                                                                                                                                                                                                          |
|                                        | Operability can change over time as a function of changing harvesting technology and economics                                                                                                                                                                                                                                                                                                                                                             |
| Integrated resource management         | The identification and consideration of all resource values, including social, economic                                                                                                                                                                                                                                                                                                                                                                    |
| (IRM)                                  | and environmental needs, in resource planning and decision-making.                                                                                                                                                                                                                                                                                                                                                                                         |
| Karst                                  | An area of limestone terrain characterized by sinks, ravines, and underground                                                                                                                                                                                                                                                                                                                                                                              |
| l andscape-level biodiversity          | Streams.<br>The Landscape Unit Planning Guide provides objectives for maintaining biodiversity at                                                                                                                                                                                                                                                                                                                                                          |
|                                        | both the landscape level and the stand level. At the landscape level, guidelines are                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | provided for the maintenance of seral stage distribution, patch size distribution and                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | landscape connectivity.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Landscape unit                         | A planning area based on topographic or geographic features, that is appropriately sized (up to 100,000 bectares), and designed for application of landscape lovel                                                                                                                                                                                                                                                                                         |
|                                        | biodiversity objectives.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Long-term harvest level                | A harvest level that can be maintained indefinitely given a particular forest                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | management regime (which defines the timber harvesting land base, and objectives                                                                                                                                                                                                                                                                                                                                                                           |
| Mature seral                           | and guidelines for non-timber values) and estimates of timber growth and yield.                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | conditions and biogeoclimatic zone.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Management assumptions                 | Approximations of management objectives, priorities, constraints and other conditions                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | needed to represent forest management actions in a forest planning model. These                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | specification of minimum harvestable ages utilization levels integrated resource                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | guidelines and silviculture and pest management programs.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mean annual increment (MAI)            | Stand volume divided by stand age. The age at which average stand growth, or MAI,                                                                                                                                                                                                                                                                                                                                                                          |
|                                        | reaches its maximum is called the culmination age (CMAI). Harvesting all stands at this age results in a maximum average harvest ever the long term                                                                                                                                                                                                                                                                                                        |
| Minimum harvestable age (MHA)          | The age at which a stand of trees is expected to achieve a merchantable condition.                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | The minimum harvestable age could be defined based on maximize average                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | productivity (culmination of mean annual increment), minimum stand volume, or                                                                                                                                                                                                                                                                                                                                                                              |
| Medal                                  | product objectives (usually related to average tree diameter).                                                                                                                                                                                                                                                                                                                                                                                             |
| Model                                  | system or problem. Forest managers and planners have made extensive use of                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | models, such as maps, classification systems and yield projections, to help direct                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | management activities.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Natural disturbance type (NDT)         | An area that is characterized by a natural disturbance regime, such as wildfires, which                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | frequent stand-initiating disturbances usually have older forests                                                                                                                                                                                                                                                                                                                                                                                          |
| Not satisfactorily restocked           | An area not covered by a sufficient number of well-spaced trees of desirable species.                                                                                                                                                                                                                                                                                                                                                                      |
| (NSR)                                  | Stocking standards are set by the B.C. Forest Service. Areas harvested prior to                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | October 1987 and not yet sufficiently stocked according to standards are classified as                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | classified as current NSR                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Operational Adjustment Factor</b>   | OAF1 and OAF2 are TIPSY input parameters that reduce predicted vield to account                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (UAF)                                  | for factors such as non-productive areas within stands, disease and insects, non-                                                                                                                                                                                                                                                                                                                                                                          |
| (UAF)                                  | for factors such as non-productive areas within stands, disease and insects, non-<br>commercial cover, stocking gaps, decay, waste, and breakage.                                                                                                                                                                                                                                                                                                          |
| (OAF)<br>Operability                   | for factors such as non-productive areas within stands, disease and insects, non-<br>commercial cover, stocking gaps, decay, waste, and breakage.<br>Classification of an area considered available for timber harvesting. Operability is<br>determined using the terrain characteristics of the area as well as the quality and                                                                                                                           |
| (OAF)<br>Operability                   | for factors such as non-productive areas within stands, disease and insects, non-<br>commercial cover, stocking gaps, decay, waste, and breakage.<br>Classification of an area considered available for timber harvesting. Operability is<br>determined using the terrain characteristics of the area as well as the quality and<br>quantity of timber on the area.                                                                                        |
| (OAF)<br>Operability<br>Person-year(s) | for factors such as non-productive areas within stands, disease and insects, non-<br>commercial cover, stocking gaps, decay, waste, and breakage.<br>Classification of an area considered available for timber harvesting. Operability is<br>determined using the terrain characteristics of the area as well as the quality and<br>quantity of timber on the area.<br>One person working the equivalent of one full year, defined as at least 180 days of |

Productive forest land base All forested crown land in a management unit. Used to support the management of non timber resources. The THLB is a subset of this land base. (PFLB) Protected area A designation for areas of land and water set aside to protect natural heritage, cultural heritage or recreational values (may include national park, provincial park, or ecological reserve designations). Areas of land adjacent to wetlands or bodies of water such as swamps, streams, **Riparian area** rivers or lakes. Scenic area Any visually sensitive area or scenic landscape identified through a visual landscape inventory or planning process carried out or approved by a district manager. Sensitivity analysis A process used to examine how uncertainties about data and management practices could affect timber supply. Inputs to an analysis are changed, and the results are compared to a baseline or base case. Sequential stages in the development of plant communities that successively occupy Seral stages a site and replace each other over time. Site index A measure of site productivity. The indices are reported as the average height, in meters, that the tallest trees in a stand are expected to achieve at 50 years (age is measured at 1.3 meters above the ground). Site index curves have been developed for British Columbia's major commercial tree species. A stand is a relatively localized and homogeneous land unit that can be managed Stand-level biodiversity using a single set of treatments. In stands, objectives for biodiversity are met by maintaining specified stand structure (wildlife trees or patches), vegetation species composition and coarse woody debris levels. Stocking The proportion of an area occupied by trees, measured by the degree to which the crowns of adjacent trees touch, and the number of trees per hectare. **Table Interpolation Program for** A B.C. Forest Service computer program used to generate yield projections for Stand Yields (TIPSY) managed stands based on interpolating from yield tables of a model (TASS) that simulates the growth of individual trees based on internal growth processes, crown competition, environmental factors and silvicultural practices. **Timber harvesting land base** Crown forest land within the timber supply area where timber harvesting is considered (THLB) both acceptable and economically feasible, given objectives for all relevant forest values, existing timber quality, market values, and applicable technology. Timber supply The amount of timber that is forecast to be available for harvesting over a specified time period, under a particular management regime. An integrated resource management unit established in accordance with Section 7 of Timber supply area (TSA) the Forest Act. Tree farm license (TFL) Provides rights to harvest timber, and outlines responsibilities for forest management, in a particular area. A hoofed herbivore, such as deer. Ungulate **Unsalvaged losses** The volume of timber killed or damaged annually by natural causes (e.g., fire, wind, insects and disease) that is not harvested. Variable Density Yield Prediction An empirical yield prediction system, supported by the Ministry of Forests and Range. (VDYP) designed to predict average yields and provide forest inventory updates over large areas (i.e., Timber Supply Areas). It is intended for use in unmanaged natural stands of pure or mixed species composition. **Vegetation Resources Inventory** An assessment of British Columbia's vegetation resources. It includes computerized (VRI) maps, a database describing the location and nature of forest information, including timber size, stand age, timber volume, tree species composition, and shrub, herb, and bryoid information. It replaces the older forest inventory. Visual quality objective (VQO) Defines a level of acceptable landscape alteration resulting from timber harvesting and other activities. A number of visual guality classes have been defined on the basis of the maximum amount of alteration permitted. Volume estimates Estimates of yields from forest stands over time. Yield projections can be developed for stand volume, stand diameter or specific products, and for empirical (average stocking), normal (optimal stocking) or managed stands. **Yield projections** See volume estimates. Watershed An area drained by a stream or river. A large watershed may contain several smaller watersheds. Wildlife tree A standing live or dead tree with special characteristics that provide valuable habitat for conservation or enhancement of wildlife. Woodlot licence An agreement entered into under the Forest Act. It allows for small-scale forestry to be practised in a described area (Crown and private) on a sustained yield basis.

# Acronyms

| AAC        | Allowable Annual Cut                                                  |
|------------|-----------------------------------------------------------------------|
| Analysis   | Timber Supply Analysis                                                |
| AU         | Analysis Unit                                                         |
| BCTS       | British Columbia Timber Sales                                         |
| BEC        | Biogeoclimatic Ecosystem Classification                               |
| BEO        | Biodiversity Emphasis Option                                          |
| BMTA       | Biodiversity, Mining and Tourism Area                                 |
| CF         | Chief Forester                                                        |
| CWAP       | Coastal Watershed Assessment Procedure                                |
| DFO        | Department of Fisheries and Oceans                                    |
| DM         | District Manager                                                      |
| EBM        | Ecosystem-Based Management                                            |
| ESA        | Environmentally Sensitive Area                                        |
| FIP        | Forest inventory Planning                                             |
| FIZ        | Forest Inventory Zone                                                 |
| FPC        | Forest Practices Code                                                 |
| FPPR       | Forest Planning and Practices Regulation                              |
| FSP        | Forest Stewardship Plan                                               |
| GAR        | Government Action Regulation                                          |
| GIS        | Geographic Information System                                         |
| HLP        | Higher Level Plan                                                     |
| ILMB       | Integrated Land Management Bureau (Ministry of Agriculture and Lands) |
| IP         | Information Package                                                   |
| IRM        | Integrated Resource Management                                        |
| LRMP       | Land and Resource Management Plan                                     |
| LU         | Landscape Unit                                                        |
| MHA        | Minimum Harvestable Age                                               |
| MOE        | Ministry of Environment                                               |
| MFR        | Ministry of Forests and Range                                         |
| MO         | Ministerial Order                                                     |
| NCC        | Non-Commercial Cover                                                  |
| NDT        | Natural Disturbance Type                                              |
| NRL        | Non-Recoverable Losses                                                |
| NSR        | Not Satisfactorily Restocked                                          |
| OAF        | Operational Adjustment Factor                                         |
| OGMA       | Old Growth Management Area                                            |
| PSP        | Permanent Sample Plot                                                 |
| PFLB       | Productive Forest Land Base                                           |
| PSYU       | Public Sustained Yield Unit                                           |
| QMD        | Quadratic Mean Diameter                                               |
| REI        | Recreation Features Inventory                                         |
| RMZ        | Riparian Management Zone                                              |
| RUS        | Recreation Opportunity Spectrum                                       |
| RKZ        | Ripanan Reserve Zone                                                  |
|            | Site Index                                                            |
| SI<br>SDM7 | Sile Index<br>Special Descurse Management Zene                        |
|            | Trop Form Lipping                                                     |
|            | Timber Harvesting Land Rase                                           |
| VAC        | Visual Absorption Canability                                          |
| VQQ        | Visual Quality Objective                                              |
| VRI        | Vegetation Resources Inventory                                        |
| WHA        | Wildlife Habitat Area                                                 |
| UWR        | Ungulate Winter Range                                                 |
|            |                                                                       |

## References

**B.C. Ministry of Agriculture and Lands**. 2007. *South Central Coast Land Use Objective Order*, August 2, 2007. Integrated Land Management Bureau. Nanaimo, BC.

**B.C. Ministry of Agriculture and Lands**. 2008. *Central and North Coast Land Use Objective Order*, January 3, 2008. Integrated Land Management Bureau. Nanaimo, BC.

**B.C. Ministry of Agriculture and Lands**. 2008. *Background and Intent Document for the South Central Coast and Central and North Coast Land Use Objectives Orders*, April 18, 2008. Integrated Land Management Bureau. Nanaimo, BC.

**B.C. Ministry of Forests.** 2003a. *DFAM interim standards for data package preparation and timber supply analyses*. Timber Supply Branch.

**B.C. Ministry of Forests.** 2003b. *DFAM interim standards for public and First Nations review*. Timber Supply Branch.

**B.C. Ministry of Forests.** 2003c. *Modelling options for disturbance of areas outside the timber harvesting land base.* Draft working paper. Forest Analysis Branch.

**B.C. Ministry of Forests**. 2003d. Supplemental guide for preparing the timber supply analysis package. Forest Analysis Branch.

**B.C. Ministry of Forests**. 2003e. *Harvest flow considerations for the timber supply review. Draft working paper.* Forest Analysis Branch.

B.C. Ministry of Forests. 2002. Landscape Unit Planning Guidebook, Forest Practices Code, Victoria, BC.

**B.C. Ministry of Forests**. 1999a. *Timber Supply Review, Mid Coast Timber Supply Area Analysis Report*. Timber Supply Branch.

B.C. Ministry of Forests. 1999b. Coastal Watershed Assessment Procedures Guidebook (v2.1 Apr 1999)

**B.C. Ministry of Forests**. 1998. *Procedures for Factoring Visual Resources into Timber Supply Analyses*. Timber Supply Branch.

**B.C. Ministry of Forests and B.C. Ministry of Environment, Lands and Parks**. 1995. *Biodiversity Guidebook*. Forest Practices Code, Victoria, BC.

**Forsite Consultants Ltd.** 2009. *Determination of an Economically Operable Land base for the Mid Coast TSA.* January 2009, Salmon Arm, BC.

**Government of B.C.** 2004. *Draft Mid Coast Land and Resource Management Plan – July 22, 2004,* B.C. Ministry of Sustainable Resource Management.

**Pedersen, L**. 2000. *Mid Coast Timber Supply Area Rationale for Allowable Annual Cut (AAC) Determination*. B.C. Ministry of Forests, Timber Supply Branch.

**Timberline Natural Resource Consultants Ltd**. 2009. *Site Index Adjustment of the Mid Coast Timber Supply Area* (Project # BC0108405), January 2009, Timberline Natural Resource Consultants, Victoria, BC.

**Timberline Natural Resource Consultants Ltd**. 2009. *Kingcome Timber Supply Area TSR3 Data Package* (Project # 4061921), June 2008, Timberline Natural Resource Consultants, Victoria, BC.

# Appendix A: Yield Curves

|     | Existing Natural Yields (VDYP) |     |     |       |     |     |     |       |     |     |     |       |       |     |     |     |     |     |     |     |     |       |     |     |     |       |     |     |
|-----|--------------------------------|-----|-----|-------|-----|-----|-----|-------|-----|-----|-----|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|
| Age | 101                            | 102 | 103 | 104   | 105 | 106 | 107 | 108   | 109 | 110 | 111 | 112   | 113   | 114 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128   | 129 | 130 | 131 | 132   | 133 | 134 |
| 0   | 0                              | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0   | 0   |
| 10  | 0                              | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 0     | 0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0   | 0   | 1     | 0   | 0   |
| 20  | 1                              | 0   | 0   | 3     | 1   | 0   | 0   | 10    | 1   | 0   | 0   | 25    | 10    | 0   | 1   | 0   | 0   | 1   | 0   | 0   | 0   | 3     | 1   | 0   | 0   | 34    | 9   | 1   |
| 30  | 66                             | 26  | 0   | 71    | 27  | 1   | 1   | 122   | 32  | 1   | 1   | 131   | 43    | 12  | 86  | 18  | 2   | 41  | 9   | 1   | 0   | 71    | 9   | 1   | 0   | 128   | 38  | 13  |
| 40  | 174                            | 119 | 17  | 168   | 112 | 19  | 6   | 242   | 122 | 10  | 2   | 255   | 141   | 30  | 217 | 112 | 37  | 130 | 77  | 30  | 3   | 187   | 87  | 20  | 1   | 255   | 114 | 35  |
| 50  | 266                            | 203 | 77  | 257   | 191 | 67  | 37  | 345   | 204 | 58  | 7   | 362   | 238   | 62  | 325 | 199 | 105 | 213 | 150 | 86  | 33  | 288   | 169 | 79  | 11  | 363   | 205 | 87  |
| 60  | 344                            | 274 | 128 | 341   | 264 | 115 | 77  | 434   | 275 | 110 | 41  | 453   | 322   | 112 | 413 | 274 | 163 | 290 | 217 | 140 | 73  | 375   | 241 | 137 | 53  | 455   | 286 | 152 |
| 70  | 411                            | 334 | 172 | 415   | 330 | 159 | 115 | 510   | 337 | 157 | 87  | 530   | 397   | 163 | 488 | 337 | 213 | 360 | 278 | 188 | 111 | 450   | 305 | 189 | 95  | 533   | 357 | 209 |
| 80  | 470                            | 387 | 211 | 485   | 391 | 200 | 151 | 576   | 393 | 199 | 127 | 595   | 463   | 212 | 552 | 393 | 257 | 425 | 333 | 234 | 147 | 516   | 360 | 236 | 133 | 600   | 419 | 262 |
| 90  | 520                            | 431 | 244 | 537   | 438 | 232 | 180 | 630   | 439 | 234 | 163 | 648   | 518   | 256 | 605 | 440 | 294 | 473 | 377 | 270 | 177 | 571   | 408 | 275 | 166 | 655   | 473 | 308 |
| 100 | 565                            | 470 | 273 | 581   | 478 | 260 | 205 | 676   | 479 | 266 | 195 | 693   | 566   | 296 | 650 | 480 | 326 | 513 | 414 | 301 | 203 | 619   | 449 | 310 | 196 | 702   | 519 | 350 |
| 110 | 605                            | 504 | 300 | 619   | 511 | 284 | 227 | 716   | 513 | 294 | 224 | 730   | 608   | 332 | 690 | 515 | 355 | 547 | 446 | 328 | 226 | 660   | 485 | 341 | 222 | 741   | 560 | 387 |
| 120 | 640                            | 533 | 322 | 645   | 535 | 302 | 244 | 749   | 542 | 318 | 250 | 761   | 643   | 364 | 723 | 546 | 379 | 570 | 470 | 347 | 243 | 695   | 515 | 368 | 245 | 774   | 595 | 419 |
| 130 | 669                            | 559 | 342 | 684   | 570 | 325 | 264 | 785   | 573 | 342 | 274 | 793   | 679   | 397 | 754 | 572 | 400 | 606 | 501 | 373 | 264 | 732   | 547 | 395 | 269 | 808   | 630 | 452 |
| 140 | 692                            | 580 | 358 | 720   | 602 | 346 | 283 | 818   | 602 | 366 | 295 | 822   | 713   | 428 | 780 | 595 | 418 | 639 | 530 | 397 | 283 | 765   | 577 | 421 | 290 | 838   | 662 | 483 |
| 150 | 710                            | 597 | 371 | 752   | 630 | 365 | 299 | 848   | 628 | 386 | 315 | 847   | 742   | 456 | 801 | 613 | 432 | 669 | 556 | 418 | 300 | 795   | 603 | 444 | 310 | 865   | 690 | 511 |
| 160 | 723                            | 609 | 381 | 780   | 654 | 381 | 313 | 874   | 651 | 405 | 331 | 870   | 769   | 482 | 817 | 626 | 442 | 695 | 578 | 436 | 314 | 822   | 627 | 464 | 328 | 889   | 716 | 537 |
| 170 | 732                            | 617 | 387 | 803   | 675 | 395 | 324 | 896   | 672 | 422 | 346 | 890   | 793   | 506 | 829 | 634 | 449 | 717 | 596 | 451 | 325 | 845   | 649 | 483 | 344 | 909   | 740 | 560 |
| 180 | 735                            | 621 | 391 | 828   | 697 | 409 | 336 | 917   | 691 | 438 | 359 | 909   | 815   | 529 | 837 | 639 | 452 | 740 | 616 | 467 | 338 | 866   | 669 | 501 | 360 | 928   | 761 | 582 |
| 190 | 744                            | 630 | 398 | 851   | 718 | 423 | 347 | 937   | 710 | 454 | 372 | 926   | 836   | 550 | 848 | 648 | 459 | 762 | 635 | 483 | 350 | 887   | 688 | 517 | 374 | 946   | 781 | 603 |
| 200 | 752                            | 638 | 404 | 874   | 738 | 436 | 358 | 956   | 727 | 468 | 384 | 941   | 855   | 571 | 860 | 657 | 466 | 783 | 652 | 498 | 362 | 905   | 705 | 533 | 388 | 962   | 799 | 623 |
| 210 | 761                            | 646 | 410 | 895   | 757 | 449 | 369 | 974   | 743 | 482 | 395 | 955   | 873   | 590 | 870 | 666 | 473 | 803 | 669 | 512 | 373 | 922   | 721 | 548 | 402 | 977   | 816 | 641 |
| 220 | 769                            | 653 | 415 | 921   | 779 | 464 | 382 | 990   | 758 | 495 | 405 | 968   | 890   | 608 | 881 | 674 | 479 | 828 | 690 | 529 | 387 | 938   | 736 | 562 | 414 | 991   | 832 | 658 |
| 230 | 777                            | 661 | 420 | 947   | 802 | 478 | 395 | 1,005 | 772 | 507 | 414 | 980   | 906   | 625 | 890 | 682 | 485 | 851 | 710 | 546 | 400 | 953   | 750 | 575 | 426 | 1,003 | 846 | 674 |
| 240 | 784                            | 668 | 425 | 971   | 823 | 492 | 407 | 1,019 | 785 | 518 | 423 | 992   | 920   | 642 | 900 | 690 | 491 | 874 | 729 | 563 | 413 | 967   | 763 | 587 | 437 | 1,015 | 860 | 689 |
| 250 | 792                            | 674 | 430 | 995   | 844 | 506 | 419 | 1,032 | 798 | 529 | 431 | 1,002 | 934   | 657 | 908 | 697 | 496 | 896 | 748 | 578 | 426 | 980   | 775 | 598 | 447 | 1,026 | 872 | 703 |
| 260 | 792                            | 675 | 431 | 999   | 847 | 509 | 421 | 1,039 | 804 | 535 | 437 | 1,011 | 945   | 670 | 911 | 698 | 497 | 899 | 751 | 581 | 427 | 987   | 783 | 605 | 454 | 1,035 | 883 | 714 |
| 270 | 793                            | 676 | 432 | 1,002 | 851 | 512 | 422 | 1,045 | 810 | 541 | 443 | 1,019 | 954   | 682 | 913 | 698 | 498 | 901 | 754 | 583 | 428 | 995   | 791 | 611 | 460 | 1,043 | 893 | 725 |
| 280 | 794                            | 677 | 433 | 1,005 | 854 | 514 | 424 | 1,051 | 815 | 547 | 448 | 1,026 | 963   | 693 | 914 | 699 | 498 | 903 | 757 | 585 | 429 | 1,001 | 798 | 617 | 466 | 1,050 | 902 | 735 |
| 290 | 795                            | 678 | 434 | 1,008 | 857 | 517 | 425 | 1,056 | 820 | 552 | 453 | 1,033 | 972   | 704 | 916 | 699 | 499 | 905 | 759 | 586 | 430 | 1,007 | 804 | 622 | 471 | 1,057 | 911 | 744 |
| 300 | 795                            | 678 | 435 | 1,010 | 859 | 519 | 426 | 1,061 | 824 | 557 | 458 | 1,040 | 980   | 715 | 917 | 700 | 499 | 906 | 761 | 588 | 431 | 1,012 | 809 | 627 | 476 | 1,064 | 919 | 753 |
| 310 | 796                            | 679 | 436 | 1,013 | 862 | 521 | 428 | 1,065 | 828 | 561 | 462 | 1,046 | 987   | 725 | 919 | 700 | 500 | 907 | 763 | 589 | 432 | 1,017 | 815 | 632 | 480 | 1,070 | 926 | 762 |
| 320 | 797                            | 679 | 437 | 1,015 | 864 | 523 | 429 | 1,069 | 832 | 565 | 466 | 1,052 | 995   | 734 | 920 | 700 | 500 | 909 | 765 | 591 | 433 | 1,021 | 819 | 636 | 485 | 1,076 | 933 | 770 |
| 330 | 797                            | 680 | 437 | 1,016 | 866 | 525 | 430 | 1,072 | 835 | 569 | 469 | 1,058 | 1,002 | 744 | 921 | 700 | 501 | 909 | 767 | 592 | 434 | 1,024 | 823 | 640 | 488 | 1,082 | 940 | 778 |
| 340 | 797                            | 680 | 438 | 1,018 | 868 | 526 | 431 | 1,075 | 838 | 573 | 473 | 1,063 | 1,008 | 752 | 922 | 700 | 501 | 910 | 768 | 593 | 434 | 1,027 | 827 | 643 | 492 | 1,087 | 946 | 785 |
| 350 | 798                            | 680 | 438 | 1,019 | 869 | 528 | 432 | 1,078 | 840 | 576 | 476 | 1,068 | 1,014 | 761 | 922 | 700 | 501 | 910 | 769 | 594 | 435 | 1,030 | 830 | 646 | 496 | 1,092 | 952 | 792 |

|     |       |       |     |       |       |       |       |       |       |       |       | Futu  | re Mar | nageo | d Yield | s (TIPS | SY) |       |       |       |       |       |       |       |       |       |       |     |
|-----|-------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|---------|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| Age | 201   | 202   | 203 | 204   | 205   | 206   | 207   | 208   | 209   | 210   | 211   | 212   | 213    | 214   | 221     | 222     | 223 | 224   | 225   | 226   | 227   | 228   | 229   | 230   | 231   | 232   | 233   | 234 |
| 0   | 0     | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0     | 0       | 0       | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   |
| 10  | 0     | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0     | 0       | 0       | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   |
| 20  | 21    | 4     | 0   | 5     | 3     | 2     | 3     | 1     | 3     | 3     | 2     | 13    | 2      | 0     | 16      | 2       | 0   | 2     | 3     | 1     | 1     | 1     | 2     | 1     | 0     | 9     | 0     | 0   |
| 30  | 129   | 61    | 12  | 69    | 59    | 37    | 64    | 69    | 71    | 51    | 43    | 119   | 29     | 1     | 108     | 50      | 15  | 51    | 62    | 29    | 20    | 63    | 43    | 33    | 16    | 105   | 18    | 2   |
| 40  | 257   | 156   | 44  | 185   | 164   | 127   | 179   | 230   | 223   | 190   | 162   | 269   | 106    | 7     | 223     | 133     | 52  | 149   | 170   | 113   | 82    | 217   | 172   | 149   | 103   | 251   | 79    | 15  |
| 50  | 397   | 246   | 92  | 313   | 289   | 235   | 309   | 381   | 370   | 332   | 292   | 423   | 206    | 30    | 339     | 217     | 106 | 266   | 296   | 219   | 169   | 364   | 307   | 279   | 226   | 396   | 162   | 52  |
| 60  | 524   | 340   | 142 | 439   | 406   | 338   | 430   | 523   | 513   | 470   | 418   | 579   | 305    | 70    | 457     | 296     | 161 | 374   | 415   | 324   | 261   | 505   | 437   | 402   | 341   | 549   | 249   | 101 |
| 70  | 641   | 431   | 187 | 558   | 519   | 435   | 547   | 645   | 634   | 586   | 532   | 717   | 402    | 110   | 555     | 377     | 210 | 482   | 531   | 418   | 343   | 622   | 550   | 515   | 450   | 680   | 332   | 154 |
| 80  | 746   | 508   | 228 | 664   | 627   | 528   | 656   | 763   | 751   | 698   | 637   | 850   | 499    | 156   | 652     | 452     | 254 | 583   | 639   | 507   | 418   | 738   | 654   | 615   | 542   | 810   | 419   | 208 |
| 90  | 837   | 579   | 265 | 757   | 716   | 615   | 745   | 867   | 857   | 803   | 735   | 966   | 585    | 201   | 735     | 514     | 296 | 670   | 728   | 593   | 491   | 842   | 753   | 710   | 629   | 928   | 501   | 259 |
| 100 | 914   | 646   | 300 | 850   | 798   | 690   | 837   | 958   | 945   | 891   | 824   | 1,062 | 665    | 243   | 808     | 573     | 338 | 746   | 813   | 669   | 560   | 929   | 844   | 800   | 710   | 1,024 | 574   | 309 |
| 110 | 984   | 705   | 336 | 931   | 883   | 752   | 924   | 1,046 | 1,032 | 973   | 899   | 1,149 | 743    | 285   | 870     | 628     | 376 | 824   | 900   | 732   | 624   | 1,016 | 919   | 874   | 788   | 1,108 | 643   | 355 |
| 120 | 1,049 | 756   | 368 | 1,002 | 957   | 817   | 997   | 1,130 | 1,113 | 1,051 | 972   | 1,224 | 814    | 324   | 926     | 676     | 411 | 895   | 974   | 791   | 678   | 1,096 | 992   | 943   | 853   | 1,185 | 709   | 406 |
| 130 | 1,104 | 802   | 397 | 1,069 | 1,021 | 881   | 1,063 | 1,207 | 1,190 | 1,124 | 1,039 | 1,287 | 879    | 363   | 977     | 719     | 441 | 954   | 1,039 | 851   | 723   | 1,172 | 1,059 | 1,010 | 911   | 1,249 | 771   | 452 |
| 140 | 1,151 | 842   | 423 | 1,128 | 1,080 | 935   | 1,124 | 1,266 | 1,250 | 1,192 | 1,102 | 1,341 | 933    | 404   | 1,024   | 757     | 468 | 1,008 | 1,099 | 907   | 762   | 1,236 | 1,125 | 1,071 | 969   | 1,305 | 828   | 494 |
| 150 | 1,190 | 878   | 445 | 1,178 | 1,133 | 982   | 1,177 | 1,317 | 1,301 | 1,245 | 1,161 | 1,382 | 981    | 440   | 1,064   | 791     | 494 | 1,059 | 1,152 | 955   | 805   | 1,286 | 1,186 | 1,130 | 1,021 | 1,349 | 878   | 532 |
| 160 | 1,223 | 910   | 467 | 1,224 | 1,179 | 1,024 | 1,223 | 1,369 | 1,349 | 1,290 | 1,210 | 1,418 | 1,027  | 474   | 1,098   | 820     | 517 | 1,103 | 1,198 | 997   | 847   | 1,334 | 1,233 | 1,182 | 1,060 | 1,386 | 921   | 567 |
| 170 | 1,254 | 940   | 487 | 1,267 | 1,220 | 1,062 | 1,263 | 1,418 | 1,397 | 1,333 | 1,250 | 1,454 | 1,070  | 505   | 1,127   | 848     | 538 | 1,142 | 1,239 | 1,036 | 885   | 1,382 | 1,273 | 1,223 | 1,086 | 1,419 | 960   | 601 |
| 180 | 1,281 | 968   | 505 | 1,303 | 1,255 | 1,096 | 1,300 | 1,461 | 1,441 | 1,376 | 1,285 | 1,484 | 1,107  | 533   | 1,152   | 873     | 557 | 1,176 | 1,275 | 1,069 | 917   | 1,425 | 1,309 | 1,259 | 1,109 | 1,450 | 997   | 633 |
| 190 | 1,307 | 992   | 521 | 1,338 | 1,287 | 1,125 | 1,332 | 1,496 | 1,478 | 1,414 | 1,321 | 1,509 | 1,142  | 561   | 1,176   | 894     | 574 | 1,208 | 1,306 | 1,100 | 944   | 1,463 | 1,348 | 1,291 | 1,128 | 1,477 | 1,032 | 664 |
| 200 | 1,328 | 1,014 | 536 | 1,369 | 1,315 | 1,151 | 1,364 | 1,528 | 1,510 | 1,448 | 1,355 | 1,530 | 1,173  | 586   | 1,196   | 914     | 590 | 1,237 | 1,335 | 1,126 | 969   | 1,494 | 1,383 | 1,325 | 1,143 | 1,500 | 1,063 | 693 |
| 210 | 1,349 | 1,032 | 550 | 1,399 | 1,343 | 1,177 | 1,394 | 1,556 | 1,539 | 1,477 | 1,386 | 1,548 | 1,201  | 609   | 1,216   | 934     | 604 | 1,264 | 1,364 | 1,151 | 993   | 1,522 | 1,415 | 1,356 | 1,158 | 1,518 | 1,091 | 719 |
| 220 | 1,368 | 1,050 | 563 | 1,430 | 1,376 | 1,206 | 1,428 | 1,586 | 1,566 | 1,504 | 1,414 | 1,548 | 1,223  | 633   | 1,235   | 953     | 618 | 1,291 | 1,398 | 1,179 | 1,017 | 1,549 | 1,443 | 1,386 | 1,173 | 1,535 | 1,117 | 743 |
| 230 | 1,386 | 1,066 | 575 | 1,457 | 1,407 | 1,232 | 1,459 | 1,613 | 1,593 | 1,528 | 1,439 | 1,548 | 1,243  | 655   | 1,251   | 970     | 630 | 1,318 | 1,429 | 1,206 | 1,040 | 1,575 | 1,467 | 1,411 | 1,187 | 1,535 | 1,140 | 767 |
| 240 | 1,405 | 1,081 | 585 | 1,482 | 1,436 | 1,255 | 1,485 | 1,637 | 1,618 | 1,552 | 1,462 | 1,548 | 1,260  | 675   | 1,267   | 985     | 642 | 1,343 | 1,458 | 1,230 | 1,061 | 1,600 | 1,489 | 1,433 | 1,201 | 1,535 | 1,162 | 787 |
| 250 | 1,422 | 1,094 | 595 | 1,505 | 1,461 | 1,277 | 1,510 | 1,660 | 1,640 | 1,575 | 1,482 | 1,548 | 1,274  | 694   | 1,280   | 997     | 652 | 1,366 | 1,483 | 1,251 | 1,082 | 1,622 | 1,508 | 1,454 | 1,213 | 1,535 | 1,180 | 806 |
| 260 | 1,438 | 1,106 | 604 | 1,526 | 1,484 | 1,297 | 1,531 | 1,679 | 1,660 | 1,595 | 1,500 | 1,548 | 1,288  | 712   | 1,292   | 1,008   | 662 | 1,387 | 1,505 | 1,271 | 1,100 | 1,643 | 1,527 | 1,472 | 1,224 | 1,535 | 1,194 | 823 |
| 270 | 1,452 | 1,118 | 612 | 1,545 | 1,504 | 1,317 | 1,551 | 1,696 | 1,677 | 1,613 | 1,517 | 1,548 | 1,301  | 728   | 1,303   | 1,019   | 670 | 1,406 | 1,525 | 1,288 | 1,118 | 1,660 | 1,545 | 1,488 | 1,234 | 1,535 | 1,207 | 839 |
| 280 | 1,464 | 1,129 | 620 | 1,562 | 1,523 | 1,336 | 1,570 | 1,711 | 1,692 | 1,630 | 1,534 | 1,548 | 1,313  | 743   | 1,313   | 1,028   | 679 | 1,423 | 1,544 | 1,306 | 1,134 | 1,676 | 1,562 | 1,504 | 1,242 | 1,535 | 1,219 | 853 |
| 290 | 1,475 | 1,138 | 626 | 1,578 | 1,539 | 1,354 | 1,587 | 1,725 | 1,705 | 1,645 | 1,549 | 1,548 | 1,323  | 757   | 1,322   | 1,036   | 687 | 1,439 | 1,560 | 1,324 | 1,149 | 1,689 | 1,577 | 1,519 | 1,249 | 1,535 | 1,229 | 867 |
| 300 | 1,475 | 1,138 | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | 1,715 | 1,654 | 1,558 | 1,548 | 1,324  | 757   | 1,322   | 1,037   | 689 | 1,443 | 1,565 | 1,330 | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | 1,206 | 867 |
| 310 | 1,475 | 1,138 | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | 1,715 | 1,654 | 1,558 | 1,548 | 1,324  | 757   | 1,322   | 1,037   | 689 | 1,443 | 1,565 | 1,318 | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | 1,206 | 867 |
| 320 | 1,475 | 1,138 | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | 1,715 | 1,654 | 1,558 | 1,548 | 1,324  | 757   | 1,322   | 1,037   | 689 | 1,443 | 1,565 | 1,318 | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | 1,206 | 867 |
| 330 | 1,475 | 1,138 | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | 1,715 | 1,654 | 1,558 | 1,548 | 1,323  | 757   | 1,322   | 1,037   | 689 | 1,443 | 1,565 | 1,318 | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | 1,206 | 867 |
| 340 | 1,475 | 1,138 | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | 1,715 | 1,654 | 1,558 | 1,548 | 1,323  | 757   | 1,322   | 1,037   | 689 | 1,443 | 1,565 | 1,318 | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | 1,206 | 867 |
| 350 | 1,475 | 1,138 | 628 | 1,582 | 1,544 | 1,358 | 1,592 | 1,737 | 1,715 | 1,654 | 1,558 | 1,548 | 1,323  | 757   | 1,322   | 1,037   | 689 | 1,443 | 1,565 | 1,318 | 1,154 | 1,701 | 1,588 | 1,530 | 1,255 | 1,535 | 1,206 | 867 |

|     | Existing Managed Yields (TIPSY) DR Future Managed Yields (TIPSY) |       |     |       |       |       |       |       |       |       |       |       |       |            |            |       |       |     |       |       |       |       |       |       |       |       |       |       |     |       |
|-----|------------------------------------------------------------------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|------------|-------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|-------|
| Age | 301                                                              | 302   | 303 | 304   | 305   | 306   | 307   | 308   | 309   | 310   | 311   | 312   | 313   | 314        | 315        | 401   | 402   | 403 | 404   | 405   | 406   | 407   | 408   | 409   | 410   | 411   | 412   | 413   | 414 | 415   |
| 0   | 0                                                                | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0          | 214        | 0     | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 0     |
| 10  | 0                                                                | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0          | 214        | 0     | 0     | 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 0     |
| 20  | 19                                                               | 2     | 0   | 4     | 2     | 1     | 2     | 1     | 2     | 0     | 0     | 15    | 2     | 0          | 214        | 19    | 2     | 0   | 5     | 2     | 1     | 2     | 1     | 2     | 0     | 0     | 15    | 2     | 0   | 1     |
| 30  | 117                                                              | 51    | 6   | 65    | 42    | 21    | 31    | 47    | 58    | 12    | 10    | 123   | 34    | 1          | 218        | 121   | 53    | 6   | 75    | 47    | 23    | 39    | 47    | 58    | 12    | 10    | 123   | 34    | 1   | 21    |
| 40  | 241                                                              | 135   | 28  | 175   | 132   | 84    | 120   | 190   | 202   | 78    | 70    | 278   | 118   | 10         | 243        | 246   | 139   | 29  | 189   | 139   | 89    | 130   | 190   | 203   | 78    | 70    | 278   | 118   | 10  | 88    |
| 50  | 368                                                              | 223   | 58  | 302   | 240   | 169   | 227   | 335   | 345   | 185   | 172   | 437   | 221   | 36         | 286        | 375   | 226   | 59  | 317   | 250   | 176   | 238   | 335   | 346   | 186   | 173   | 437   | 221   | 36  | 175   |
| 60  | 496                                                              | 304   | 98  | 422   | 344   | 260   | 333   | 472   | 486   | 291   | 275   | 597   | 322   | 79         | 329        | 503   | 309   | 100 | 440   | 353   | 269   | 341   | 472   | 487   | 291   | 275   | 597   | 322   | 79  | 265   |
| 70  | 601                                                              | 388   | 137 | 539   | 444   | 343   | 428   | 586   | 603   | 389   | 370   | 740   | 424   | 122        | 369        | 610   | 394   | 138 | 561   | 456   | 350   | 437   | 586   | 604   | 390   | 370   | 740   | 424   | 122 | 352   |
| 80  | 708                                                              | 466   | 172 | 650   | 542   | 417   | 521   | 694   | 715   | 482   | 461   | 876   | 524   | 172        | 405        | 715   | 471   | 174 | 671   | 553   | 426   | 532   | 694   | 716   | 483   | 461   | 876   | 524   | 172 | 437   |
| 90  | 796                                                              | 529   | 203 | 743   | 631   | 492   | 610   | 799   | 823   | 560   | 538   | 995   | 612   | 220        | 435        | 804   | 534   | 204 | 764   | 642   | 502   | 621   | 799   | 823   | 561   | 538   | 995   | 612   | 220 | 515   |
| 100 | 874                                                              | 591   | 231 | 829   | 707   | 564   | 688   | 888   | 912   | 636   | 610   | 1,094 | 697   | 265        | 462        | 881   | 596   | 232 | 855   | 717   | 573   | 696   | 888   | 913   | 637   | 610   | 1,094 | 697   | 265 | 588   |
| 110 | 941                                                              | 649   | 256 | 916   | 772   | 628   | 752   | 967   | 994   | 706   | 679   | 1,183 | 778   | 309        | 487        | 948   | 653   | 258 | 942   | 786   | 637   | 759   | 967   | 994   | 707   | 679   | 1,183 | 778   | 309 | 659   |
| 120 | 1,002                                                            | 699   | 280 | 989   | 844   | 684   | 814   | 1,044 | 1,072 | 775   | 744   | 1,260 | 852   | 349        | 512        | 1,010 | 703   | 281 | 1,014 | 856   | 692   | 823   | 1,044 | 1,073 | 775   | 744   | 1,260 | 852   | 349 | 725   |
| 130 | 1,059                                                            | 743   | 303 | 1,055 | 908   | 730   | 878   | 1,117 | 1,146 | 833   | 804   | 1,325 | 917   | 393        | 534        | 1,066 | 748   | 304 | 1,080 | 919   | 737   | 888   | 1,117 | 1,147 | 834   | 805   | 1,325 | 917   | 393 | 784   |
| 140 | 1,108                                                            | 782   | 325 | 1,116 | 962   | 770   | 937   | 1,185 | 1,216 | 883   | 854   | 1,379 | 973   | 435        | 552        | 1,113 | 787   | 327 | 1,141 | 971   | 776   | 944   | 1,185 | 1,217 | 883   | 854   | 1,379 | 973   | 435 | 834   |
| 150 | 1,149                                                            | 818   | 346 | 1,168 | 1,010 | 812   | 985   | 1,244 | 1,272 | 928   | 898   | 1,421 | 1,023 | 473        | 566        | 1,154 | 821   | 347 | 1,192 | 1,019 | 821   | 992   | 1,244 | 1,272 | 929   | 898   | 1,421 | 1,023 | 473 | 876   |
| 160 | 1,184                                                            | 849   | 365 | 1,214 | 1,054 | 856   | 1,029 | 1,290 | 1,317 | 975   | 941   | 1,459 | 1,071 | 508        | 580        | 1,189 | 853   | 365 | 1,237 | 1,062 | 864   | 1,034 | 1,290 | 1,317 | 976   | 941   | 1,459 | 1,071 | 508 | 916   |
| 170 | 1,215                                                            | 878   | 381 | 1,256 | 1,094 | 894   | 1,068 | 1,332 | 1,359 | 1,018 | 983   | 1,495 | 1,114 | 540        | 593        | 1,220 | 881   | 382 | 1,277 | 1,101 | 901   | 1,071 | 1,332 | 1,360 | 1,018 | 983   | 1,495 | 1,114 | 540 | 959   |
| 180 | 1,242                                                            | 903   | 396 | 1,294 | 1,128 | 929   | 1,103 | 1,374 | 1,404 | 1,057 | 1,021 | 1,526 | 1,152 | 570        | 606        | 1,246 | 906   | 396 | 1,315 | 1,135 | 934   | 1,105 | 1,374 | 1,404 | 1,058 | 1,021 | 1,526 | 1,152 | 570 | 997   |
| 190 | 1,265                                                            | 926   | 408 | 1,328 | 1,159 | 957   | 1,134 | 1,413 | 1,444 | 1,096 | 1,057 | 1,552 | 1,188 | 599        | 618        | 1,270 | 929   | 409 | 1,348 | 1,165 | 962   | 1,136 | 1,413 | 1,444 | 1,096 | 1,058 | 1,552 | 1,188 | 599 | 1,033 |
| 200 | 1,288                                                            | 947   | 422 | 1,358 | 1,187 | 982   | 1,161 | 1,448 | 1,480 | 1,131 | 1,092 | 1,573 | 1,219 | 625        | 629        | 1,291 | 950   | 422 | 1,378 | 1,193 | 987   | 1,162 | 1,448 | 1,480 | 1,131 | 1,092 | 1,573 | 1,219 | 625 | 1,065 |
| 210 | 1,309                                                            | 968   | 434 | 1,388 | 1,215 | 1,006 | 1,188 | 1,479 | 1,510 | 1,162 | 1,124 | 1,573 | 1,247 | 650        | 640        | 1,312 | 970   | 434 | 1,408 | 1,220 | 1,010 | 1,187 | 1,479 | 1,510 | 1,162 | 1,124 | 1,573 | 1,247 | 650 | 1,097 |
| 220 | 1,329                                                            | 988   | 445 | 1,421 | 1,244 | 1,032 | 1,218 | 1,506 | 1,537 | 1,188 | 1,152 | 1,573 | 1,269 | 675        | 649        | 1,331 | 990   | 446 | 1,441 | 1,248 | 1,035 | 1,217 | 1,506 | 1,537 | 1,188 | 1,153 | 1,573 | 1,269 | 675 | 1,125 |
| 230 | 1,347                                                            | 1,006 | 456 | 1,451 | 1,271 | 1,055 | 1,245 | 1,531 | 1,562 | 1,210 | 1,1// | 1,573 | 1,289 | 698        | 658        | 1,350 | 1,008 | 456 | 1,470 | 1,274 | 1,058 | 1,243 | 1,531 | 1,562 | 1,210 | 1,1// | 1,573 | 1,289 | 698 | 1,149 |
| 240 | 1,364                                                            | 1,021 | 466 | 1,478 | 1,295 | 1,078 | 1,269 | 1,553 | 1,584 | 1,231 | 1,197 | 1,5/3 | 1,306 | 719        | 666        | 1,365 | 1,022 | 466 | 1,496 | 1,297 | 1,080 | 1,267 | 1,553 | 1,584 | 1,231 | 1,198 | 1,5/3 | 1,306 | 719 | 1,170 |
| 250 | 1,378                                                            | 1,034 | 476 | 1,503 | 1,318 | 1,099 | 1,292 | 1,574 | 1,607 | 1,250 | 1,216 | 1,573 | 1,320 | 738        | 672        | 1,380 | 1,035 | 476 | 1,520 | 1,320 | 1,100 | 1,289 | 1,574 | 1,607 | 1,250 | 1,216 | 1,573 | 1,320 | 738 | 1,188 |
| 260 | 1,392                                                            | 1,046 | 485 | 1,525 | 1,341 | 1,118 | 1,313 | 1,594 | 1,628 | 1,269 | 1,233 | 1,5/3 | 1,334 | 756        | 6//        | 1,393 | 1,047 | 485 | 1,541 | 1,342 | 1,120 | 1,309 | 1,594 | 1,628 | 1,269 | 1,233 | 1,5/3 | 1,334 | 756 | 1,204 |
| 270 | 1,405                                                            | 1,057 | 493 | 1,545 | 1,302 | 1,130 | 1,332 | 1,013 | 1,047 | 1,200 | 1,250 | 1,5/3 | 1,348 | 700        | 68Z        | 1,400 | 1,057 | 493 | 1,501 | 1,303 | 1,137 | 1,328 | 1,013 | 1,047 | 1,280 | 1,250 | 1,573 | 1,348 | 700 | 1,220 |
| 200 | 1,410                                                            | 1,000 | 500 | 1,302 | 1,301 | 1,100 | 1,352 | 1,030 | 1,004 | 1,303 | 1,200 | 1,573 | 1,359 | 100        | 602        | 1,419 | 1,000 | 501 | 1,579 | 1,302 | 1,100 | 1,340 | 1,030 | 1,004 | 1,303 | 1,200 | 1,573 | 1,309 | 100 | 1,234 |
| 290 | 1,430                                                            | 1,075 | 507 | 1,570 | 1,399 | 1,100 | 1,309 | 1,040 | 1,079 | 1,319 | 1,200 | 1,573 | 1,370 | 002        | 092        | 1,430 | 1,075 | 500 | 1,595 | 1,400 | 1,100 | 1,300 | 1,045 | 1,079 | 1,319 | 1,200 | 1,573 | 1,370 | 002 | 1,240 |
| 300 | 1,430                                                            | 1,075 | 509 | 1,581 | 1,402 | 1,171 | 1,3/4 | 1,009 | 1,009 | 1,330 | 1,291 | 1,5/3 | 1,304 | 002        | 095<br>605 | 1,430 | 1,075 | 509 | 1,593 | 1,402 | 1,171 | 1,309 | 1,009 | 1,009 | 1,330 | 1,291 | 1,5/3 | 1,304 | 002 | 1,201 |
| 220 | 1,430                                                            | 1,075 | 509 | 1,001 | 1,402 | 1,171 | 1,300 | 1,009 | 1,009 | 1,000 | 1,291 | 1,5/3 | 1,304 | 002        | 090<br>60F | 1,430 | 1,075 | 509 | 1,000 | 1,402 | 1,1/1 | 1,309 | 1,009 | 1,009 | 1,330 | 1,291 | 1,573 | 1,304 | 002 | 1,201 |
| 320 | 1,430                                                            | 1,075 | 509 | 1,001 | 1,402 | 1,171 | 1,300 | 1,009 | 1,009 | 1,330 | 1,291 | 1,573 | 1,304 | 002<br>802 | 090<br>605 | 1,430 | 1,075 | 509 | 1,504 | 1,402 | 1,1/1 | 1,309 | 1,009 | 1,009 | 1,330 | 1,291 | 1,573 | 1,304 | 0UZ | 1,201 |
| 240 | 1,430                                                            | 1,075 | 509 | 1,001 | 1,402 | 1,171 | 1,300 | 1,009 | 1,009 | 1,000 | 1,291 | 1,073 | 1,304 | 002        | 090        | 1,430 | 1,075 | 509 | 1,000 | 1,402 | 1,1/1 | 1,309 | 1,009 | 1,009 | 1,000 | 1,291 | 1,013 | 1,304 | 002 | 1,201 |
| 340 | 1,430                                                            | 1,075 | 509 | 1,001 | 1,402 | 1,171 | 1,300 | 1,009 | 1,009 | 1,000 | 1,291 | 1,5/3 | 1,304 | 002        | 090<br>60F | 1,430 | 1,075 | 509 | 1,5/0 | 1,402 | 1,1/1 | 1,309 | 1,009 | 1,009 | 1,330 | 1,291 | 1,573 | 1,304 | 002 | 1,201 |
| 350 | 1,430                                                            | 1,075 | 509 | 1,501 | 1,402 | 1,171 | 1,300 | 1,009 | 1,009 | 1,330 | 1,291 | 1,573 | 1,304 | 002        | 090        | 1,430 | 1,075 | 209 | 1,972 | 1,402 | 1,171 | 1,309 | 1,009 | 1,009 | 1,330 | 1,291 | 1,573 | 1,304 | 0UZ | 1,201 |

## Appendix B: Old Seral Forest Cover Requirements by Ministerial Order Area/LU/Site Series Surrogate

Area summary by MO/LU/SiteSeriesSurrogate for units with THLB area greater than 1 ha in the TSA. The long term THLB area shown here includes TL areas that will revert to the TSA in the future (135,343 ha + 5,279 ha = 140,622 ha) minus 302 ha of deciduous leading stands without site series surrogate classification and minus 22 ha of units with less than 1 ha in the THLB, totaling 140,297 ha. The current condition field describes whether a) Met NTHLB: the old growth target is currently completely satisfied in non THLB areas, b) Met THLB: the old growth target is currently satisfied but needs to include old growth areas from the THLB and, c) Not Met: the current old growth area is not enough to satisfy the target.

| MO<br>2009 | Landscape Unit | Site Series<br>Surrogate           | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition |
|------------|----------------|------------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|----------------------|
| CNC        | Braden         | CWHvm1 Cw Med                      | 265          | 1,381                       | 1,646                 | 28                             | 461                    | 1,170                                    | 709                  | Met NTHLB            |
|            |                | CWHvm1 Cw Poor                     | 552          | 2,673                       | 3,225                 | 28                             | 903                    | 1,546                                    | 643                  | Met NTHLB            |
|            |                | CWHvm1 HB Good                     | 76           | 44                          | 120                   | 25                             | 30                     | 0                                        | -30                  | Not Met              |
|            |                | CWHvm1 HB Med                      | 1,052        | 4,411                       | 5,463                 | 25                             | 1,366                  | 3,665                                    | 2,299                | Met NTHLB            |
|            |                | CWHVM1 HB POOr                     | 120          | 3,875                       | 3,995                 | 25                             | 999                    | 2,221                                    | 1,223                | Met NTHLB            |
|            |                | CWHVIIII S GOOU<br>CWHvm1 S Med    | 24           | 185                         | 92<br>272             | 25                             | 23<br>68               | 134                                      | 40                   |                      |
|            |                | CWHvm1 S PoorPl                    | 10           | 174                         | 183                   | 23                             | 51                     | 85                                       | 34                   | Met NTHLB            |
|            |                | CWHvm2 Cw Poor                     | 12           | 131                         | 144                   | 28                             | 40                     | 42                                       | 1                    | Met THLB             |
|            |                | CWHvm2 HB Med                      | 17           | 353                         | 370                   | 25                             | 92                     | 298                                      | 205                  | Met NTHLB            |
|            |                | CWHvm2 HB Poor                     | 2            | 903                         | 905                   | 25                             | 226                    | 478                                      | 252                  | Met NTHLB            |
|            | Braden Total   | 1                                  | 2,218        | 14,198                      | 16,416                | 26                             | 4,260                  | 9,707                                    | 5,447                |                      |
|            | Clyak          | CWHvh2 Cw Med                      | 121          | 65                          | 186                   | 29                             | 54                     | 135                                      | 81                   | Met NTHLB            |
|            |                | CWHVh2 CW Poor                     | 109          | 418                         | 527                   | 29                             | 153                    | 439                                      | 286                  | Met NTHLB            |
|            |                | CWHVIIZ Fullweu                    | 133          | 10                          | 142                   | 27                             | 2                      | 0                                        | -2                   | Not Met              |
|            |                | CWHvm1 Cw Med                      | 1 315        | 488                         | 1 803                 | 28                             | 505                    | 991                                      | 486                  | Met THI B            |
|            |                | CWHvm1 Cw Poor                     | 1,150        | 2.396                       | 3.545                 | 28                             | 993                    | 3.268                                    | 2.276                | Met NTHLB            |
|            |                | CWHvm1 Fd Med                      | 31           | 5                           | 36                    | 21                             | 8                      | 0                                        | -8                   | Not Met              |
|            |                | CWHvm1 Fd Poor                     | 32           | 5                           | 37                    | 21                             | 8                      | 0                                        | -8                   | Not Met              |
|            |                | CWHvm1 HB Good                     | 517          | 389                         | 906                   | 25                             | 226                    | 91                                       | -135                 | Not Met              |
|            |                | CWHvm1 HB Med                      | 3,038        | 2,267                       | 5,305                 | 25                             | 1,326                  | 2,432                                    | 1,106                | Met NTHLB            |
|            |                | CWHvm1 HB Poor                     | 60           | 272                         | 332                   | 25                             | 83                     | 285                                      | 202                  | Met NTHLB            |
|            |                | CWHVm1 S Good                      | 138          | 370                         | 509                   | 25                             | 127                    | 291                                      | 163                  | Met NTHLB            |
|            |                | CWHVIIII S Med                     | 07<br>17     | 64                          | 244                   | 20                             | 23                     | 56                                       | 00<br>34             |                      |
|            |                | CWHvm2 Cw Good                     | 8            | 0                           | 8                     | 59                             | 5                      | 0                                        | -5                   | Not Met              |
|            |                | CWHvm2 Cw Med                      | 144          | 27                          | 170                   | 28                             | 48                     | 68                                       | 20                   | Met THLB             |
|            |                | CWHvm2 Cw Poor                     | 655          | 3,358                       | 4,012                 | 28                             | 1,123                  | 3,691                                    | 2,567                | Met NTHLB            |
|            |                | CWHvm2 Fd Med                      | 8            | 16                          | 24                    | 49                             | 12                     | 0                                        | -12                  | Not Met              |
|            |                | CWHvm2 Fd Poor                     | 8            | 1                           | 9                     | 49                             | 4                      | 0                                        | -4                   | Not Met              |
|            |                | CWHvm2 HB Good                     | 149          | 98                          | 247                   | 25                             | 62                     | 0                                        | -62                  | Not Met              |
|            |                | CWHvm2 HB Med                      | 332          | 916                         | 1,248                 | 25                             | 312                    | 976                                      | 664                  | Met NTHLB            |
|            |                | CWHVIII2 HB POOr<br>CWHVIII2 S Mod | 2            | 8/1                         | 982                   | 25                             | 245                    | 910                                      | 004<br>1             | Net NTHLB            |
|            |                | MHmm1 Cw Poor                      | 32           | 869                         | 900                   | 28                             | 252                    | 821                                      | 569                  | Met NTHI B           |
|            |                | MHmm1 HB Good                      | 4            | 2                           | 5                     | 59                             | 3                      | 0                                        | -3                   | Not Met              |
|            |                | MHmm1 HB Med                       | 13           | 38                          | 52                    | 25                             | 13                     | 36                                       | 23                   | Met NTHLB            |
|            |                | MHmm1 HB Poor                      | 10           | 234                         | 244                   | 25                             | 61                     | 235                                      | 174                  | Met NTHLB            |
|            | Clyak Total    | 1                                  | 8,228        | 13,334                      | 21,563                | 31                             | 5,745                  | 14,842                                   | 9,097                |                      |
|            | Dean           | CWHds2 Cw Good                     | 22           | 92                          | 114                   | 50                             | 57                     | 8                                        | -49                  | Not Met              |
|            |                | CWHds2 Fd Good                     | 90<br>77     | 1 2 1 1                     | 1 289                 | 42                             | 387                    | 108                                      | -97                  | Not Met              |
|            |                | CWHds2 Fd Poor                     | 39           | 1,114                       | 1,153                 | 36                             | 415                    | 154                                      | -261                 | Not Met              |
|            |                | CWHds2 HB Good                     | 8            | 45                          | 53                    | 60                             | 32                     | 0                                        | -32                  | Not Met              |
|            |                | CWHds2 HB Med                      | 236          | 1,350                       | 1,586                 | 43                             | 682                    | 217                                      | -465                 | Not Met              |
|            |                | CWHms2 HB Good                     | 2            | 129                         | 131                   | 38                             | 50                     | 0                                        | -50                  | Not Met              |
|            |                | CWHms2 HB Med                      | 158          | 604                         | 762                   | 38                             | 290                    | 383                                      | 93                   | Met THLB             |
|            |                | CWHws2 Fd Good                     | 18           | 1                           | 19                    | 42                             | 8                      | 0                                        | -8                   | Not Met              |
|            |                | CWHws2 HB Good                     | 47           | 81                          | 127                   | 60                             | 76                     | 0                                        | -76                  | Not Met              |
|            |                | MHmm2 HB Med                       | 304<br>29    | 3,444<br>1 961              | 3,748<br>1 202        | 43                             | 1,612                  | 1,8/3                                    | 262                  | Not Met              |
|            | Dean Total     |                                    | 1.035        | 10.070                      | 11 104                | 44                             | 4 4 9 9                | 3 257                                    | -1.242               | NOLIVIEL             |
|            | Denny          | CWHvh2 Cw Med                      | 349          | 850                         | 1,199                 | 29                             | 348                    | 287                                      | -61                  | Not Met              |
|            | ,              | CWHvh2 Cw Poor                     | 1,246        | 8,897                       | 10,143                | 29                             | 2,942                  | 7.055                                    | 4,113                | Met NTHLB            |
|            |                | CWHvh2 HB Med                      | 373          | 1,168                       | 1,540                 | 29                             | 447                    | 681                                      | 234                  | Met NTHLB            |
|            |                | CWHvh2 HB Poor                     | 4            | 1,476                       | 1,480                 | 29                             | 429                    | 1,022                                    | 593                  | Met NTHLB            |
|            | Denny Total    |                                    | 1 972        | 12 3 9 1                    | 14 363                | 29                             | 4 165                  | 9 044                                    | 4 879                |                      |

| MO<br>2009 | Landscape Unit      | Site Series<br>Surrogate | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition |
|------------|---------------------|--------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|----------------------|
|            | Don Peninsula       | CWHvh2 Cw Med            | 1.960        | 711                         | 2.671                 | 29                             | 774                    | 1.595                                    | 821                  | Met THLB             |
|            |                     | CWHvh2 Cw Poor           | 477          | 4,174                       | 4,651                 | 29                             | 1,349                  | 4,435                                    | 3,087                | Met NTHLB            |
|            |                     | CWHvh2 HB Med            | 1,063        | 1,220                       | 2,283                 | 29                             | 662                    | 1,640                                    | 977                  | Met NTHLB            |
|            |                     | CWHvh2 HB Poor           | 457          | 2,045                       | 2,502                 | 29                             | 726                    | 1,824                                    | 1,098                | Met NTHLB            |
|            |                     | CWHvh2 S Med             | 15           | <sup>′</sup> 1              | 16                    | 59                             | 9                      | 0                                        | -9                   | Not Met              |
|            |                     | CWHvh2 S PoorPl          | 124          | 32                          | 156                   | 29                             | 45                     | 133                                      | 88                   | Met THLB             |
|            |                     | CWHvm1 Cw Med            | 603          | 101                         | 704                   | 28                             | 197                    | 643                                      | 446                  | Met THLB             |
|            |                     | CWHvm1 Cw Poor           | 675          | 895                         | 1,570                 | 28                             | 440                    | 1,112                                    | 672                  | Met NTHLB            |
|            |                     | CWHvm1 HB Med            | 354          | 169                         | 523                   | 25                             | 131                    | 490                                      | 359                  | Met NTHLB            |
|            |                     | CWHvm1 HB Poor           | 33           | 43                          | 76                    | 25                             | 19                     | 76                                       | 57                   | Met NTHLB            |
|            |                     | CWHvm1 S Med             | 195          | 283                         | 479                   | 25                             | 120                    | 479                                      | 359                  | Met NTHLB            |
|            |                     | CWHvm1 S PoorPl          | 463          | 161                         | 624                   | 28                             | 175                    | 349                                      | 174                  | Met THLB             |
|            |                     | CWHvm2 Cw Med            | 3            | 1                           | 4                     | 28                             | 1                      | 4                                        | 3                    | Met THLB             |
|            |                     | CWHvm2 Cw Poor           | (            | 4                           | 11                    | 28                             | 3                      | 11                                       | 8                    | Met NTHLB            |
|            | Don Peninsula Total | CW/Hyb2 Cyr Mod          | 6,430        | 9,838                       | 16,269                | 30                             | 4,650                  | 12,790                                   | 8,139                | Mot THLP             |
|            | D005/Dallely        | CWHVh2 Cw Meu            | 132          | 205                         | 175                   | 29                             | 129                    | 141                                      | 201                  |                      |
|            |                     | CWHvh2 Ed Med            | 100          | 0                           | 1                     | 23                             | 120                    | 420                                      | 231                  | Not Met              |
|            |                     | CWHvh2 HB Good           | 18           | 7                           | 25                    | 25                             | 6                      | 0                                        | -6                   | Not Met              |
|            |                     | CWHvh2 HB Med            | 145          | 60                          | 205                   | 29                             | 59                     | 24                                       | -36                  | Not Met              |
|            |                     | CWHvh2 S Med             | 30           | 13                          | 43                    | 59                             | 25                     | 15                                       | -11                  | Not Met              |
|            |                     | CWHvm1 Cw Med            | 86           | 866                         | 952                   | 28                             | 267                    | 789                                      | 522                  | Met NTHLB            |
|            |                     | CWHvm1 Cw Poor           | 108          | 1,055                       | 1,163                 | 28                             | 326                    | 946                                      | 620                  | Met NTHLB            |
|            |                     | CWHvm1 HB Good           | 113          | 306                         | 419                   | 25                             | 105                    | 63                                       | -41                  | Not Met              |
|            |                     | CWHvm1 HB Med            | 1,036        | 3,581                       | 4,617                 | 25                             | 1,154                  | 3,284                                    | 2,129                | Met NTHLB            |
|            |                     | CWHvm1 HB Poor           | 6            | 480                         | 485                   | 25                             | 121                    | 367                                      | 246                  | Met NTHLB            |
|            |                     | CWHvm1 S Good            | 25           | 239                         | 264                   | 25                             | 66                     | 181                                      | 115                  | Met NTHLB            |
|            |                     | CWHvm1 S Med             | 148          | 65                          | 213                   | 25                             | 53                     | 0                                        | -53                  | Not Met              |
|            |                     | CWHvm2 Cw Med            | 126          | 242                         | 368                   | 28                             | 103                    | 329                                      | 226                  | Met NTHLB            |
|            |                     | CWHvm2 Cw Poor           | 329          | 2,194                       | 2,524                 | 28                             | 707                    | 2,275                                    | 1,568                | Met NTHLB            |
|            |                     | CWHvm2 Fd Med            | 4            | 0                           | 4                     | 49                             | 2                      | 0                                        | -2                   | Not Met              |
|            |                     | CWHVM2 HB G000           | 23           | 2 0 1 6                     | 23                    | 25                             | 509                    | 2 0 1 6                                  | C-<br>1 419          |                      |
|            |                     |                          | 3/7          | 2,010                       | 2,393                 | 25                             | 090<br>461             | 2,010                                    | 1,410                |                      |
|            |                     | CWHVIII2 HB FOOI         | 39           | 1,000                       | 1,040                 | 20                             | 401                    | 1,471                                    | 1,009                |                      |
|            |                     | CWHvm2 S Med             | 43           | 3                           | 45                    | 59                             | 27                     | 2                                        | -27                  | Not Met              |
|            |                     | MHmm1 Cw Poor            | 56           | 645                         | 702                   | 28                             | 196                    | 644                                      | 448                  | Met NTHI B           |
|            |                     | MHmm1 Fd Med             | 2            | 0                           | 2                     | 0                              | 0                      | 0                                        | 0                    | Met NTHLB            |
|            |                     | MHmm1 HB Med             | 14           | 282                         | 295                   | 25                             | 74                     | 239                                      | 165                  | Met NTHLB            |
|            |                     | MHmm1 HB Poor            | 13           | 659                         | 672                   | 25                             | 168                    | 534                                      | 366                  | Met NTHLB            |
|            | Doos/Dallery Total  |                          | 3,032        | 14,849                      | 17,880                | 30                             | 4,705                  | 13,737                                   | 9,031                |                      |
|            | Ellerslie           | CWHvh2 Cw Med            | 94           | 294                         | 388                   | 29                             | 112                    | 326                                      | 214                  | Met NTHLB            |
|            |                     | CWHvh2 Cw Poor           | 86           | 1,478                       | 1,564                 | 29                             | 454                    | 1,010                                    | 557                  | Met NTHLB            |
|            |                     | CWHvh2 HB Med            | 43           | 388                         | 431                   | 29                             | 125                    | 228                                      | 103                  | MetNIHLB             |
|            |                     | CWHVm1 CW Med            | 1,588        | 1,496                       | 3,084                 | 28                             | 864                    | 1,473                                    | 610                  | Met I HLB            |
|            |                     | CWHVM1 CW Poor           | 602          | 2,752                       | 3,353                 | 28                             | 939                    | 2,067                                    | 1,129                | Met NTHLB            |
|            |                     | CWHVm1 HB Poor           | 439          | 779                         | 1,650                 | 25                             | 200                    | 1,495                                    | 211                  |                      |
|            |                     | CWHvm1 S Med             | 41           | 118                         | 159                   | 25                             | 40                     | 156                                      | 117                  | Met NTHI B           |
|            |                     | CWHvm1 S PoorPl          | 32           | 169                         | 202                   | 28                             | 56                     | 106                                      | 50                   | Met NTHLB            |
|            |                     | CWHvm2 Cw Med            | 41           | 41                          | 81                    | 28                             | 23                     | 52                                       | 29                   | Met THLB             |
|            |                     | CWHvm2 Cw Poor           | 19           | 201                         | 220                   | 28                             | 62                     | 170                                      | 108                  | Met NTHLB            |
|            |                     | CWHvm2 HB Med            | 5            | 110                         | 115                   | 25                             | 29                     | 74                                       | 46                   | Met NTHLB            |
|            |                     | MHwh1 Cw Med             | 1            | 25                          | 27                    | 68                             | 18                     | 27                                       | 9                    | Met NTHLB            |
|            | Ellerslie Total     |                          | 3,013        | 9,262                       | 12,276                | 30                             | 3,384                  | 7,596                                    | 4,212                |                      |
|            | Evans               | CWHvh2 Cw Med            | 481          | 2,197                       | 2,678                 | 49                             | 1,312                  | 1,690                                    | 378                  | Met NTHLB            |
|            |                     | CWHVh2 CW Poor           | 862          | 16,696                      | 17,559                | 49                             | 8,604                  | 10,816                                   | 2,213                | Met NTHLB            |
|            |                     | CWHVIIZ HB GOOD          | 3            | 20                          | 01                    | 42                             | 20                     | 1 200                                    | 21                   |                      |
|            |                     | CWHVh2 S Good            | 30           | 2,231                       | 2,351                 | 49                             | 1,152                  | 1,309                                    | -61                  |                      |
|            |                     | CWHvh2 S Med             | 23           | 72                          | 95                    | 59                             | 56                     | 95                                       | 39                   | Met NTHI B           |
|            |                     | CWHvm1 Cw Good           | 21           | 2                           | 22                    | 42                             | 9                      | 0                                        | -9                   | Not Met              |
|            |                     | CWHvm1 Cw Med            | 53           | 21                          | 74                    | 47                             | 35                     | 38                                       | 3                    | Met THLB             |
|            |                     | CWHvm1 Cw Poor           | 6            | 294                         | 300                   | 47                             | 141                    | 254                                      | 113                  | Met NTHLB            |
|            |                     | CWHvm1 HB Med            | 13           | 7                           | 20                    | 42                             | 8                      | 6                                        | -3                   | Not Met              |
|            |                     | CWHvm2 Cw Med            | 5            | 134                         | 139                   | 47                             | 65                     | 129                                      | 64                   | Met NTHLB            |
|            |                     | CWHvm2 HB Med            | 3            | 71                          | 74                    | 42                             | 31                     | 56                                       | 24                   | Met NTHLB            |
|            | Evans Total         | 014/11/14/01 01 11       | 1,619        | 21,859                      | 23,478                | 48                             | 11,501                 | 14,446                                   | 2,945                | Niet Mart            |
|            | rish Egg            | CWHVN2 CW Good           | 41           | 4                           | 45                    | 63                             | 29                     | 0                                        | -29                  | NOT WET              |
|            |                     | CWHyb2 Cw Deer           | 2,111        | 1,0/8                       | 4,395                 | 60                             | 2,900                  | 2,058                                    | -330                 |                      |
|            |                     | CWHyh2 HB Good           | 4,090        | 25,109                      | 21,103<br>971         | 50                             | 10,092                 | 23,733                                   | -160                 |                      |
|            |                     | CWHyh2 HB Med            | 642          | 997                         | 1 630                 | 68                             | 1 115                  | 684                                      | -100                 | Not Met              |
|            |                     | CWHvh2 HB Poor           | 3            | 106                         | 109                   | 68                             | 74                     | 29                                       | -45                  | Not Met              |
|            |                     | CWHvh2 S Good            | 19           | 27                          | 46                    | 59                             | 27                     | 17                                       | -10                  | Not Met              |
|            |                     | CWHvh2 S PoorPl          | 16           | 0                           | 16                    | 68                             | 11                     | 0                                        | -11                  | Not Met              |

| MO<br>2009 | Landscape Unit        | Site Series<br>Surrogate        | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition |
|------------|-----------------------|---------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|----------------------|
|            |                       | MHwh1 Cw Poor                   | 1            | 221                         | 222                   | 68                             | 151                    | 222                                      | 71                   | Met NTHLB            |
|            | Fish Egg Total        | 1                               | 8,147        | 26,379                      | 34,526                | 65                             | 23,447                 | 29,366                                   | 5,919                |                      |
|            | Hunter                | CWHvh2 Cw Med                   | 111          | 195                         | 306                   | 49                             | 150                    | 232                                      | 82                   | Met THLB             |
|            |                       | CWHvh2 Cw Poor                  | 329          | 7,503                       | 7,832                 | 49                             | 3,838                  | 7,136                                    | 3,298                | Met NTHLB            |
|            |                       | CWHVN2 HB GOOD                  | 229          | 400                         | 719                   | 42                             | 252                    | 105                                      | -0<br>247            | Not Met              |
|            |                       | CWHVIZ HB Meu<br>CWHvh2 HB Poor | 220          | 490<br>250                  | 334                   | 49                             | 164                    | 300                                      | -247                 | Met NTHLB            |
|            |                       | CWHvh2 S Med                    | 24           | 200                         | 24                    | 59                             | 14                     | 000                                      | -14                  | Not Met              |
|            | Hunter Total          |                                 | 779          | 8,449                       | 9,228                 | 50                             | 4,523                  | 7,772                                    | 3,249                |                      |
|            | Johnston              | CMAunp Cw Poor                  | 20           | 80                          | 100                   | 26                             | 26                     | 100                                      | 74                   | Met NTHLB            |
|            |                       | CWHvh2 Cw Med                   | 1,201        | 804                         | 2,004                 | 29                             | 581                    | 1,855                                    | 1,273                | Met NTHLB            |
|            |                       | CWHvh2 Cw Poor                  | 2,571        | 5,016                       | 7,587                 | 29                             | 2,200                  | 7,186                                    | 4,986                | Met NIHLB            |
|            |                       | CWHVIIZ HB GOOD                 | 1 071        | 150                         | 1 038                 | 20                             | 562                    | 1 671                                    | -35                  | Mot NTHLB            |
|            |                       | CWHvh2 S Good                   | 35           | 56                          | 91                    | 59                             | 54                     | 74                                       | 20                   | Met THI B            |
|            |                       | CWHvh2 S PoorPl                 | 2            | 31                          | 32                    | 29                             | 9                      | 32                                       | 23                   | Met NTHLB            |
|            |                       | CWHvm1 Cw Med                   | 43           | 10                          | 53                    | 28                             | 15                     | 53                                       | 38                   | Met THLB             |
|            |                       | CWHvm1 Cw Poor                  | 194          | 309                         | 503                   | 28                             | 141                    | 455                                      | 315                  | Met NTHLB            |
|            |                       | CWHvm1 HB Good                  | 42           | 7                           | 48                    | 25                             | 12                     | 4                                        | -9                   | Not Met              |
|            |                       | CWHVm1 HB Med                   | 242          | 95<br>50                    | 330                   | 25<br>25                       | 84<br>15               | 218                                      | 134                  |                      |
|            |                       | CWHvm1 S Good                   | 4            | 4                           | 8                     | 25                             | 2                      | 0                                        | -2                   | Not Met              |
|            |                       | CWHvm2 Cw Med                   | 124          | 85                          | 209                   | 28                             | 59                     | 208                                      | 150                  | Met NTHLB            |
|            |                       | CWHvm2 Cw Poor                  | 745          | 2,547                       | 3,292                 | 28                             | 922                    | 3,071                                    | 2,150                | Met NTHLB            |
|            |                       | CWHvm2 HB Good                  | 2            | 0                           | 2                     | 25                             | 1                      | 0                                        | -1                   | Not Met              |
|            |                       | CWHvm2 HB Med                   | 192          | 328                         | 520                   | 25                             | 130                    | 476                                      | 346                  | Met NTHLB            |
|            |                       | CWHVM2 HB Poor                  | 1            | 231                         | 232                   | 25                             | 58                     | 208                                      | 150                  |                      |
|            |                       | MHwb1 Cw Med                    | 30<br>5      | 339                         | 574                   | 20                             | 105                    | 572                                      | 207                  |                      |
|            |                       | MHwh1 Cw Poor                   | 84           | 630                         | 714                   | 29                             | 207                    | 710                                      | 503                  | Met NTHLB            |
|            |                       | MHwh1 HB Med                    | 3            | 63                          | 66                    | 68                             | 45                     | 56                                       | 11                   | Met NTHLB            |
|            | Johnston Total        |                                 | 6,692        | 11,701                      | 18,393                | 32                             | 5,285                  | 16,827                                   | 11,542               |                      |
|            | Jump Across           | CWHms2 Cw Good                  | 81           | 13                          | 94                    | 53                             | 50                     | 0                                        | -50                  | Not Met              |
|            |                       | CWHms2 Cw Med                   | 13           | 50                          | 63                    | 53                             | 33                     | 0                                        | -33                  | Not Met              |
|            |                       | CWHms2 Fd Good                  | 23           | 0<br>105                    | 29                    | 53                             | 15                     | 0                                        | -15                  |                      |
|            |                       | CWHms2 HB Good                  | 55           | 195                         | 201                   | 53                             | 116                    | 00                                       | -116                 | Not Met              |
|            |                       | CWHms2 HB Med                   | 102          | 2.613                       | 2.714                 | 53                             | 1.439                  | 1.281                                    | -157                 | Not Met              |
|            |                       | CWHvm3 HB Med                   | 12           | 1,551                       | 1,563                 | 59                             | 922                    | 1,056                                    | 134                  | Met NTHLB            |
|            |                       | CWHws2 Cw Good                  | 13           | 0                           | 13                    | 50                             | 7                      | 0                                        | -7                   | Not Met              |
|            |                       | CWHws2 HB Good                  | 3            | 76                          | 78                    | 60                             | 47                     | 0                                        | -47                  | Not Met              |
|            | lump Across Total     | CWHWS2 HB Med                   | 25           | 2,119                       | 2,145                 | 60                             | 1,287                  | 1,004                                    | -283                 | Not Met              |
|            | Kilbella/Chuckwalla   | CWHyb2 Cw Med                   | 333          | 0,760                       | 30                    | 29                             | 3,998                  | 3,420<br>Q                               | -570                 | Not Met              |
|            | Kibelia/Onuckwalia    | CWHvh2 Fd Med                   | 22           | 0                           | 22                    | 23                             | 6                      | 0                                        | -6                   | Not Met              |
|            |                       | CWHvm1 Cw Good                  | 42           | 15                          | 57                    | 25                             | 14                     | 0                                        | -14                  | Not Met              |
|            |                       | CWHvm1 Cw Med                   | 788          | 609                         | 1,397                 | 28                             | 391                    | 972                                      | 581                  | Met NTHLB            |
|            |                       | CWHvm1 Cw Poor                  | 1,052        | 1,800                       | 2,851                 | 28                             | 798                    | 2,730                                    | 1,932                | Met NTHLB            |
|            |                       | CWHVm1 Fd Good                  | 16           | 5                           | 21                    | 21                             | 4                      | 0                                        | -4                   | Not Met              |
|            |                       | CWHym1 HB Good                  | 15<br>418    | 0<br>⊿ຂว                    | 000                   | 21                             | 3<br>225               | 6                                        | -3<br>_210           | Not Met              |
|            |                       | CWHvm1 HB Med                   | 1.841        | 4.167                       | 6.008                 | 25                             | 1.502                  | 4,550                                    | 3.048                | Met NTHLB            |
|            |                       | CWHvm1 HB Poor                  | 38           | 565                         | 603                   | 25                             | 151                    | 558                                      | 408                  | Met NTHLB            |
|            |                       | CWHvm1 S Good                   | 246          | 1,058                       | 1,304                 | 25                             | 326                    | 247                                      | -79                  | Not Met              |
|            |                       | CWHvm1 S Med                    | 219          | 242                         | 461                   | 25                             | 115                    | 18                                       | -98                  | Not Met              |
|            |                       | CWHvm2 CW Med                   | 86<br>537    | 2 700                       | 201                   | 28                             | 56                     | 143                                      | 2 224                |                      |
|            |                       | CWHym2 Ed Good                  | 3            | 2,199                       | 3,330                 | 20<br>49                       | 934                    | 3,100                                    | 2,204                | Not Met              |
|            |                       | CWHvm2 Fd Med                   | 3            | Ő                           | 3                     | 49                             | 2                      | Ő                                        | -2                   | Not Met              |
|            |                       | CWHvm2 HB Good                  | 73           | 21                          | 95                    | 25                             | 24                     | 0                                        | -24                  | Not Met              |
|            |                       | CWHvm2 HB Med                   | 507          | 2,342                       | 2,849                 | 25                             | 712                    | 2,536                                    | 1,823                | Met NTHLB            |
|            |                       | CWHvm2 HB Poor                  | 88           | 1,347                       | 1,435                 | 25                             | 359                    | 1,344                                    | 985                  | Met NTHLB            |
|            |                       | MHmm1 Cw Poor                   | 12/          | 1<br>1 1 9 9                | 1 2 2 2               | 59                             | 2                      | 1 225                                    | -2                   |                      |
|            |                       | MHmm1 HB Med                    | 28           | 400                         | 428                   | 20                             | 107                    | 392                                      | 286                  | Met NTHLB            |
|            |                       | MHmm1 HB Poor                   | 18           | 920                         | 938                   | 25                             | 235                    | 838                                      | 604                  | Met NTHLB            |
|            | Kilbella/Chuckwalla T | [otal                           | 6,185        | 18,099                      | 24,283                | 29                             | 6,347                  | 18,737                                   | 12,390               |                      |
|            | Kilippi               | CWHms2 Fd Med                   | 7            | 0                           | 7                     | 17                             | 1                      | 0                                        | -1                   | Not Met              |
|            |                       | CWHms2 Fd Poor                  | 13           | 0                           | 13                    | 17                             | 2                      | 0                                        | -2                   | Not Met              |
|            |                       | CWHms2 HB Good                  | 500          | 13                          | 21                    | 23                             | 5<br>170               | 0<br>607                                 | -5<br>420            |                      |
|            |                       | CWHms2 S Good                   | 300          | 204                         | 25                    | 23                             | 1/0                    | 007<br>R                                 | 430<br>_R            | Not Met              |
|            |                       | CWHms2 S Med                    | 26           | 4                           | 30                    | 61                             | 19                     | 30                                       | 12                   | Met THLB             |
|            |                       | CWHws2 Fd Poor                  | 13           | 0                           | 13                    | 22                             | 3                      | 0                                        | -3                   | Not Met              |
|            |                       | CWHws2 HB Good                  | 66           | 57                          | 123                   | 60                             | 74                     | 39                                       | -34                  | Not Met              |
|            |                       | CWHws2 HB Med                   | 843          | 1,683                       | 2,526                 | 26                             | 657                    | 2,352                                    | 1,696                | Met NTHLB            |

| MO<br>2009 | Landscape Unit      | Site Series<br>Surrogate         | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ba) | Surplus<br>/ Deficit | Current<br>Condition   |
|------------|---------------------|----------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|------------------------|
|            |                     | CWHws2 HB Poor                   | 63           | 882                         | 945                   | 26                             | 246                    | 861                                      | 615                  | Met NTHLB              |
|            |                     | CWHws2 S Med<br>MHmm2 HB Good    | 4<br>7       | 3<br>0                      | 7<br>7                | 60<br>25                       | 4<br>2                 | 7<br>0                                   | 3<br>-2              | Met THLB<br>Not Met    |
|            |                     | MHmm2 HB Med                     | 132          | 1,026                       | 1,157                 | 25                             | 289                    | 925                                      | 636                  | Met NTHLB              |
|            | Kilippi Total       |                                  | 1,695        | 7,612                       | 9,306                 | 49<br>35                       | 3,287                  | 8,224                                    | 4,937                | Met NTHEB              |
|            | King Island         | CWHms2 Cw Med                    | 154<br>174   | 254<br>314                  | 408                   | 38                             | 155<br>215             | 378                                      | 223                  | Met NTHLB              |
|            |                     | CWHms2 Fd Med                    | 9            | 7                           | 16                    | 29                             | 215                    | 7                                        | 2                    | Met NTHLB              |
|            |                     | CWHms2 HB Med                    | 301          | 1,622                       | 1,923                 | 38<br>38                       | 731<br>189             | 849<br>76                                | 118<br>-113          | Met THLB               |
|            |                     | CWHms2 S Med                     | 6            |                             | 430                   | 61                             | 4                      | 70                                       | 3                    | Met THLB               |
|            |                     | CWHvm1 Cw Good<br>CWHvm1 Cw Med  | 77<br>427    | 6<br>890                    | 83<br>1.317           | 42<br>47                       | 35<br>619              | 0<br>733                                 | -35<br>114           | Not Met<br>Met THLB    |
|            |                     | CWHvm1 Cw Poor                   | 634          | 2,910                       | 3,544                 | 47                             | 1,666                  | 1,272                                    | -394                 | Not Met                |
|            |                     | CWHvm1 Fd Med<br>CWHvm1 Fd Poor  | 2<br>106     | 6<br>12                     | 8<br>117              | 35<br>35                       | 3<br>41                | 6<br>0                                   | 3<br>-41             | Met N I HLB<br>Not Met |
|            |                     | CWHvm1 HB Good                   | 481          | 190                         | 671                   | 42                             | 282                    | 0                                        | -282                 | Not Met                |
|            |                     | CWHvm1 HB Med<br>CWHvm1 HB Poor  | 2,184<br>327 | 2,602                       | 4,785<br>2,229        | 42<br>42                       | 2,010<br>936           | 2,013<br>1,290                           | 3<br>354             | Met THLB<br>Met NTHLB  |
|            |                     | CWHvm1 S Good                    | 78           | 14                          | 92                    | 42                             | 39                     | 0                                        | -39                  | Not Met                |
|            |                     | CWHVm1 S Med<br>CWHvm1 S PoorPl  | 70<br>9      | 2                           | 132                   | 42<br>47                       | 55<br>5                | 0                                        | -42<br>-5            | Not Met                |
|            |                     | CWHvm2 Cw Med                    | 75<br>132    | 151                         | 226                   | 47                             | 106<br>584             | 141                                      | 35                   | Met NTHLB              |
|            |                     | CWHvm2 Fd Poor                   | 12           | 0                           | 1,242                 | 49                             | 6                      | 0                                        | -6                   | Not Met                |
|            |                     | CWHvm2 HB Good                   | 118<br>328   | 67<br>1 307                 | 185<br>1.635          | 42                             | 78<br>687              | 0<br>827                                 | -78<br>140           | Not Met                |
|            |                     | CWHvm2 HB Poor                   | 24           | 2,419                       | 2,444                 | 42                             | 1,026                  | 1,178                                    | 151                  | Met NTHLB              |
|            |                     | CWHvm2 S Good<br>CWHvm2 S Med    | 2<br>9       | 0                           | 2<br>10               | 59<br>59                       | 1                      | 0                                        | -1<br>-6             | Not Met                |
|            |                     | CWHvm3 Cw Med                    | 20           | 3                           | 23                    | 47                             | 11                     | 23                                       | 12                   | Met THLB               |
|            |                     | CWHvm3 Cw Poor<br>CWHvm3 HB Med  | 2<br>101     | 0<br>410                    | 2<br>511              | 47<br>42                       | 1<br>215               | 0<br>414                                 | -1<br>199            | Not Met<br>Met NTHLB   |
|            |                     | MHmm1 Cw Med                     | 3            | 0                           | 3                     | 65                             | 2                      | 0                                        | -2                   | Not Met                |
|            |                     | MHmm1 HB Med<br>MHmm1 HB Poor    | 29<br>10     | 323<br>411                  | 351<br>420            | 42<br>42                       | 148<br>176             | 150<br>66                                | -111                 | Not Met                |
|            | King Island Total   | CW/Hyb2 Cw Cood                  | 5,911        | 17,485                      | 23,397                | 45                             | 10,036                 | 10,253                                   | 217                  | Not Mot                |
|            | Rwallia/Qualiella   | CWHvh2 Cw Med                    | 45           | 90                          | 135                   | 29                             | 39                     | 80                                       | 41                   | Met NTHLB              |
|            |                     | CWHvh2 Cw Poor<br>CWHvh2 HB Good | 278<br>127   | 2,030<br>146                | 2,307<br>273          | 29<br>25                       | 669<br>68              | 1,481<br>0                               | 812<br>-68           | Met NTHLB<br>Not Met   |
|            |                     | CWHvh2 HB Med                    | 280          | 588                         | 868                   | 29                             | 252                    | 515                                      | 264                  | Met NTHLB              |
|            |                     | CWHvh2 HB Poor<br>CWHvm1 Cw Good | 8<br>313     | 278<br>95                   | 287<br>408            | 29<br>25                       | 83<br>102              | 131<br>0                                 | 48<br>-102           | Met NTHLB<br>Not Met   |
|            |                     | CWHvm1 Cw Med                    | 279          | 472                         | 751                   | 28                             | 210                    | 187                                      | -23                  | Not Met                |
|            |                     | CWHVm1 CW Poor<br>CWHvm1 Fd Med  | 338          | 1,157                       | 1,494<br>2            | 28<br>21                       | 418<br>0               | 922                                      | 504<br>0             | Not Met                |
|            |                     | CWHvm1 HB Good                   | 871          | 694                         | 1,564                 | 25                             | 391                    | 0                                        | -391                 | Not Met                |
|            |                     | CWHVm1 HB Poor                   | 220          | 3,794<br>1,636              | 1,856                 | 25<br>25                       | 464                    | 2,446                                    | 542                  | Met NTHLB              |
|            |                     | CWHvm1 S Good                    | 335<br>260   | 396<br>311                  | 731<br>572            | 25<br>25                       | 183<br>143             | 0<br>251                                 | -183<br>108          | Not Met                |
|            |                     | CWHvm1 S PoorPl                  | 5            | 27                          | 32                    | 28                             | 9                      | 27                                       | 18                   | Met NTHLB              |
|            |                     | CWHvm2 Cw Med<br>CWHvm2 Cw Poor  | 64<br>17     | 105<br>1.386                | 169<br>1.403          | 28<br>28                       | 47<br>393              | 4<br>1.069                               | -43<br>676           | Not Met<br>Met NTHLB   |
|            |                     | CWHvm2 Fd Med                    | 22           | 0                           | 22                    | 49                             | 11                     | 0                                        | -11                  | Not Met                |
|            |                     | CWHVm2 HB Good<br>CWHvm2 HB Med  | 52<br>434    | 71<br>2,235                 | 123<br>2,669          | 25<br>25                       | 31<br>667              | 0<br>1,891                               | -31<br>1,224         | Not Met<br>Met NTHLB   |
|            |                     | CWHvm2 HB Poor                   | 44           | 3,199                       | 3,243                 | 25                             | 811                    | 2,122                                    | 1,311                | Met NTHLB              |
|            |                     | MHmm1 Cw Med                     | 6<br>9       | 0<br>5                      | 6<br>14               | 59<br>65                       | 4<br>9                 | 0                                        | -4<br>-9             | Not Met                |
|            |                     | MHmm1 HB Med                     | 12           | 339                         | 352                   | 25                             | 88                     | 284                                      | 196                  | Met NTHLB              |
|            | Kwatna/Quatlena Tot | al                               | 5,884        | 19,916                      | 25,800                | 31                             | 6,723                  | 12,956                                   | 6,233                |                        |
|            | Lower Kimsquit      | CWHms2 Cw Med                    | 5            | 18                          | 23                    | 38                             | 9                      | 0                                        | -9<br>57             | Not Met                |
|            |                     | CWHms2 Fd Poor                   | 201          | 253                         | ∠o4<br>276            | 29<br>29                       | 82<br>80               | 20<br>44                                 | -37<br>-36           | Not Met                |
|            |                     | CWHms2 HB Good                   | 417<br>1 308 | 312<br>2 317                | 729<br>3 715          | 38<br>38                       | 277<br>1 412           | 0<br>1 340                               | -277<br>-72          | Not Met                |
|            |                     | CWHms2 HB Poor                   | 84           | 678                         | 763                   | 38                             | 290                    | 351                                      | 61                   | Met THLB               |
|            |                     | CWHms2 S Good<br>CWHym3 HB Med   | 4            | 49<br>1                     | 53<br>6               | 61<br>42                       | 32<br>3                | 5                                        | -27<br>2             | Not Met<br>Met THI B   |
|            |                     | CWHws2 Fd Med                    | 46           | 33                          | 79                    | 42                             | 33                     | 30                                       | -3                   | Not Met                |
|            |                     | CWHws2 HB Good                   | 20<br>394    | 262<br>78                   | 283<br>472            | 36<br>60                       | 102<br>283             | 0                                        | -283                 | Not Met                |
| MO<br>2009 | Landscape Unit       | Site Series<br>Surrogate         | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition |
|------------|----------------------|----------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|----------------------|
|            |                      | CWHws2 HB Med                    | 487          | 2,363                       | 2,850                 | 43                             | 1,226                  | 1,895                                    | 670                  | Met NTHLB            |
|            |                      | CWHws2 HB Poor<br>CWHws2 S Med   | 38<br>43     | 3,391<br>75                 | 3,429<br>118          | 43<br>60                       | 1,474<br>71            | 1,097                                    | -377<br>-71          | Not Met              |
|            |                      | MHmm2 HB Med                     | 40           | 293                         | 297                   | 42                             | 125                    | 197                                      | 72                   | Met NTHLB            |
|            | Lower Kimsquit Total |                                  | 3,169        | 10,207                      | 13,377                | 43                             | 5,498                  | 5,218                                    | -280                 |                      |
|            | Machmell             | CWHms2 Cw Good                   | 46           | 63<br>175                   | 109                   | 53                             | 58                     | 46                                       | -11                  | Not Met              |
|            |                      | CWHms2 Cw Poor                   | 120          | 5                           | 6                     | 23                             | 2                      | 6                                        | -51                  | Met NTHLB            |
|            |                      | CWHms2 Fd Good                   | 253          | 359                         | 612                   | 53                             | 325                    | 81                                       | -244                 | Not Met              |
|            |                      | CWHms2 Fd Med                    | 285          | 139                         | 424                   | 17                             | 72                     | 73                                       | 1                    | Met THLB             |
|            |                      | CWHms2 HB Good                   | 382          | 218                         | 600                   | 23                             | 138                    | 76                                       | -20                  | Not Met              |
|            |                      | CWHms2 HB Med                    | 1,860        | 1,798                       | 3,658                 | 23                             | 841                    | 2,094                                    | 1,252                | Met NTHLB            |
|            |                      | CWHms2 HB Poor                   | 77           | 327                         | 404                   | 23                             | 93                     | 117                                      | 24                   | Met THLB             |
|            |                      | CWHms2 S Good<br>CWHms2 S Med    | 120          | 225<br>40                   | 55 S                  | 61                             | 210                    | 28                                       | -00                  | Not Met              |
|            |                      | CWHvm3 Cw Poor                   | 88           | 149                         | 237                   | 28                             | 66                     | 230                                      | 164                  | Met NTHLB            |
|            |                      | CWHvm3 Fd Good                   | 29           | 1                           | 29                    | 21                             | 6                      | 0                                        | -6                   | Not Met              |
|            |                      | CWHWIIS HB Med<br>CWHws2 Cw Med  | 42           | 359<br>12                   | 534<br>54             | 25<br>50                       | 27                     | 403                                      | 529<br>12            | Met THLB             |
|            |                      | CWHws2 Fd Good                   | 9            | 27                          | 37                    | 42                             | 15                     | 3                                        | -12                  | Not Met              |
|            |                      | CWHws2 Fd Med                    | 30           | 15                          | 45                    | 42                             | 19                     | 0                                        | -19                  | Not Met              |
|            |                      | CWHws2 Fd Pool<br>CWHws2 HB Good | 78           | 15<br>14                    | 30<br>92              | 60                             | ,<br>55                | 12                                       | -7<br>-43            | Not Met              |
|            |                      | CWHws2 HB Med                    | 879          | 2,761                       | 3,640                 | 26                             | 946                    | 2,870                                    | 1,924                | Met NTHLB            |
|            |                      | CWHws2 HB Poor                   | 136          | 1,006                       | 1,142                 | 26                             | 297                    | 1,039                                    | 742                  | Met NTHLB            |
|            | Machmell Total       | MHmm2 HB Med                     | 4 775        | 1,189                       | 13 769                | 25                             | 3 755                  | 8 135                                    | 462                  | Met NTHLB            |
|            | Nascall              | CWHms2 Cw Med                    | 22           | 208                         | 231                   | 53                             | 122                    | 193                                      | 70                   | Met NTHLB            |
|            |                      | CWHms2 Cw Poor                   | 25           | 786                         | 811                   | 61                             | 495                    | 235                                      | -260                 | Not Met              |
|            |                      | CWHms2 HB Med                    | 120          | 639<br>718                  | 758<br>721            | 53<br>53                       | 402<br>382             | 459<br>241                               | 57<br>-141           | Met THLB             |
|            |                      | CWHvm1 Cw Med                    | 11           | 625                         | 636                   | 65                             | 413                    | 441                                      | 27                   | Met NTHLB            |
|            |                      | CWHvm1 HB Med                    | 8            | 1,475                       | 1,483                 | 59                             | 875                    | 1,035                                    | 160                  | Met NTHLB            |
|            | Nascall Total        | CWHvm3 Cw Med                    | 101          | 5                           | 7                     | 65<br>58                       | 2 695                  | 2 612                                    | -83                  | Met NTHLB            |
|            | Neechanz             | CWHms2 Cw Good                   | 51           | 55                          | 106                   | 53                             | 2,035                  | 2,012                                    | -34                  | Not Met              |
|            |                      | CWHms2 Cw Med                    | 354          | 272                         | 626                   | 23                             | 144                    | 532                                      | 388                  | Met NTHLB            |
|            |                      | CWHms2 Cw Poor                   | 4            | 118                         | 121                   | 26<br>53                       | 32                     | 10                                       | -22                  | Not Met              |
|            |                      | CWHms2 Fd Med                    | 348          | 204                         | 552                   | 17                             | 90<br>94               | 52                                       | -42                  | Not Met              |
|            |                      | CWHms2 Fd Poor                   | 14           | 105                         | 119                   | 17                             | 20                     | 17                                       | -3                   | Not Met              |
|            |                      | CWHms2 HB Good                   | 116          | 278                         | 394                   | 23                             | 91<br>718              | 2 100                                    | 1 391                | Met IHLB             |
|            |                      | CWHms2 HB Poor                   | 5            | 2,134                       | 80                    | 23                             | 18                     | 2,100                                    | 1,301                | Met NTHLB            |
|            |                      | CWHvm1 Cw Med                    | 5            | 10                          | 15                    | 28                             | 4                      | 15                                       | 11                   | Met NTHLB            |
|            |                      | CWHvm2 HB Med                    | 39           | 17<br>480                   | 56<br>721             | 25                             | 202                    | 38<br>652                                | 24<br>450            | Met THLB             |
|            |                      | CWHvm3 Cw Poor                   | 11           | 409                         | 58                    | 28                             | 16                     | 42                                       | 430                  | Met NTHLB            |
|            |                      | CWHvm3 Fd Good                   | 40           | 5                           | 45                    | 21                             | 9                      | 0                                        | -9                   | Not Met              |
|            |                      | CWHvm3 Fd Med                    | 147          | 37                          | 185                   | 21                             | 39<br>11               | 39<br>0                                  | -39<br>27            |                      |
|            |                      | CWHvm3 HB Good                   | 9            | 57                          | 67                    | 25                             | 17                     | 42                                       | 25                   | Met NTHLB            |
|            |                      | CWHvm3 HB Med                    | 1,203        | 4,000                       | 5,204                 | 25                             | 1,301                  | 4,156                                    | 2,855                | Met NTHLB            |
|            |                      | CWHvm3 HB Poor<br>MHmm1 HB Med   | 197<br>17    | 2,657                       | 2,854<br>805          | 25<br>25                       | 713<br>201             | 2,483                                    | 1,769<br>474         | Met NTHLB            |
|            |                      | MHmm1 HB Poor                    | 15           | 3,159                       | 3,174                 | 25                             | 793                    | 2,530                                    | 1,737                | Met NTHLB            |
|            | Neechanz Total       |                                  | 3,978        | 14,568                      | 18,545                | 26                             | 4,594                  | 13,556                                   | 8,963                |                      |
|            | Nootum/Koeye         | CMAunp Cw Poor                   | 1            | 41<br>19                    | 43<br>104             | 26                             | 11<br>65               | 43                                       | 32                   | Met NTHLB            |
|            |                      | CWHvh2 Cw Med                    | 840          | 432                         | 1,272                 | 29                             | 369                    | 662                                      | 293                  | Met THLB             |
|            |                      | CWHvh2 Cw Poor                   | 1,341        | 4,977                       | 6,319                 | 29                             | 1,832                  | 6,111                                    | 4,278                | Met NTHLB            |
|            |                      | CWHvh2 Fd Poor                   | 16           | 8<br>42                     | 24                    | 0<br>25                        | 0                      | 0                                        | 0<br>21              | Met NTHLB            |
|            |                      | CWHvh2 HB Med                    | 509          | 735                         | 1,243                 | 23                             | 361                    | 990                                      | 630                  | Met NTHLB            |
|            |                      | CWHvh2 HB Poor                   | 47           | 367                         | 414                   | 29                             | 120                    | 291                                      | 171                  | Met NTHLB            |
|            |                      | CWHvh2 S Good                    | 29<br>7      | 64<br>2                     | 93<br>8               | 59<br>50                       | 55                     | 53                                       | -2                   | Not Met              |
|            |                      | CWHvh2 S PoorPl                  | 24           | 2                           | 26                    | 29                             | 8                      | 26                                       | 18                   | Met THLB             |
|            |                      | CWHvm1 Cw Med                    | 28           | 107                         | 135                   | 28                             | 38                     | 102                                      | 64                   | Met NTHLB            |
|            |                      | CWHvm1 Cw Poor                   | 33           | 111                         | 145                   | 28                             | 41                     | 145                                      | 104                  | Met NTHLB            |
|            |                      | CWHvm2 Cw Poor                   | 45<br>123    | ∠o<br>596                   | 70                    | 20                             | 20                     | 23<br>697                                | 496                  | Met NTHLB            |
|            |                      | CWHvm2 Fd Poor                   | 7            | 5                           | 12                    | 49                             | 6                      | 0                                        | -6                   | Not Met              |
|            |                      | CWHvm2 HB Good                   | 16           | 0<br>73                     | 16<br>129             | 25                             | 4<br>24                | 0<br>100                                 | -4                   |                      |
|            |                      |                                  | 00           | 13                          | 150                   | 23                             | 54                     | 100                                      | 00                   | MECHTILD             |

| MO<br>2009 | Landscape Unit      | Site Series<br>Surrogate        | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ba) | Surplus<br>/ Deficit | Current<br>Condition |
|------------|---------------------|---------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|----------------------|
|            |                     | CWHvm2 HB Poor                  | 14           | 38                          | 52                    | 25                             | 13                     | 8                                        | -6                   | Not Met              |
|            |                     | MHmm1 HB Med                    | 4            | 7                           | 10                    | 25                             | 3                      | 9                                        | 6                    | Met NTHLB            |
|            |                     | MHwh1 Cw Med                    | 27           | 323                         | 350                   | 29                             | 101                    | 344                                      | 243                  | Met NTHLB            |
|            |                     | MHwh1 HB Med                    | 10           | 15                          | 25                    | 68                             | 17                     | 25                                       | 8                    | Met THLB             |
|            |                     | MHwh1 HB Poor                   | 3            | 108                         | 111                   | 29                             | 32                     | 98                                       | 66                   | Met NTHLB            |
|            | Nootum/Koeye Total  | CW/Hyb2 Cw Door                 | 3,604        | 8,095                       | 11,699                | 35                             | 3,428                  | 9,744                                    | 6,315                | Not Mot              |
|            | Islands             |                                 | 100          | 0,200                       | 0,374                 | 97                             | 0,103                  | 5,002                                    | -921                 | NOT WEL              |
|            |                     | CWHvh2 HB Med                   | 106          | 42                          | 148                   | 97                             | 143                    | 20                                       | -124                 | Not Met              |
|            | Outer Coast Islands | Fotal                           | 273          | 6,249                       | 6,522                 | 97                             | 6,326                  | 5,682                                    | -644                 |                      |
|            | Owikeno             | CWHms2 Cw Med                   | 16           | 12<br>104                   | 29<br>111             | 23<br>53                       | 7<br>50                | 18                                       | 11                   | Met THLB             |
|            |                     | CWHms2 Fd Med                   | 236          | 325                         | 561                   | 17                             | 95                     | 203                                      | 108                  | Met THLB             |
|            |                     | CWHms2 Fd Poor                  | 1            | 352                         | 353                   | 17                             | 60                     | 13                                       | -47                  | Not Met              |
|            |                     | CWHms2 HB Good                  | 113          | 409                         | 522                   | 23                             | 120                    | 0                                        | -120                 | Not Met              |
|            |                     | CWHms2 HB Med                   | 527          | 233                         | 236                   | 23                             | 369<br>54              | 999<br>179                               | 630<br>125           | Met NTHLB            |
|            |                     | CWHvm1 Cw Med                   | 33           | 366                         | 398                   | 28                             | 112                    | 303                                      | 191                  | Met NTHLB            |
|            |                     | CWHvm1 Cw Poor                  | 110          | 636                         | 746                   | 28                             | 209                    | 679                                      | 471                  | Met NTHLB            |
|            |                     | CWHvm1 HP Cood                  | 16           | 267                         | 283                   | 21                             | 60<br>72               | 83                                       | 23                   |                      |
|            |                     | CWHvm1 HB Med                   | 32           | 2.859                       | 2.890                 | 25                             | 723                    | 1.711                                    | 989                  | Met NTHLB            |
|            |                     | CWHvm2 Cw Poor                  | 15           | 872                         | 887                   | 28                             | 248                    | 869                                      | 621                  | Met NTHLB            |
|            |                     | CWHvm3 HB Med                   | 192          | 1,056                       | 1,249                 | 25                             | 312                    | 1,114                                    | 802                  | Met NTHLB            |
|            | Owikeno Total       |                                 | 1 344        | 904                         | 11 159                | 25                             | 2 7 5 0                | 7 071                                    | 4 321                |                      |
|            | Price               | CWHvh2 Cw Poor                  | 98           | 5,109                       | 5,207                 | 68                             | 3,541                  | 1,912                                    | -1,629               | Not Met              |
|            | Price Total         |                                 | 98           | 5,109                       | 5,207                 | 68                             | 3,541                  | 1,912                                    | -1,629               |                      |
|            | Roderick            | CWHvh2 Cw Med                   | 262          | 251                         | 513                   | 29                             | 149                    | 497                                      | 348                  | Met NTHLB            |
|            | Poderick Total      | CVVHVn2 HB Med                  | 195          | 138                         | 333                   | 29                             | 245                    | 160                                      | 63                   | Met THLB             |
|            | Roscoe              | CWHvh2 Cw Med                   | 690          | 1.587                       | 2.276                 | 49                             | 1.115                  | 1.825                                    | 709                  | Met NTHLB            |
|            |                     | CWHvh2 Cw Poor                  | 353          | 4,612                       | 4,964                 | 49                             | 2,433                  | 3,197                                    | 765                  | Met NTHLB            |
|            |                     | CWHvh2 HB Med                   | 514          | 1,846                       | 2,360                 | 49                             | 1,156                  | 1,826                                    | 670                  | Met NTHLB            |
|            |                     | CWHVII2 HB POOI                 | 40           | 1,503                       | 1,543                 | 49<br>59                       | 750<br>63              | 559<br>105                               | -197<br>42           | Met NTHLB            |
|            |                     | CWHvm1 Cw Med                   | 108          | 1,161                       | 1,269                 | 47                             | 597                    | 805                                      | 208                  | Met NTHLB            |
|            |                     | CWHvm1 Cw Poor                  | 124          | 1,716                       | 1,840                 | 47                             | 865                    | 1,023                                    | 158                  | Met NTHLB            |
|            |                     | CWHVm1 HB Med                   | 223          | 2,454                       | 2,677                 | 42                             | 1,124                  | 2,054                                    | 930<br>556           | Met NTHLB            |
|            |                     | CWHvm2 Cw Med                   | 8            | 82                          | 89                    | 47                             | 42                     | 68                                       | 26                   | Met NTHLB            |
|            |                     | CWHvm2 HB Med                   | 25           | 240                         | 265                   | 42                             | 111                    | 231                                      | 120                  | Met NTHLB            |
|            | Poscoo Total        | CWHvm2 HB Poor                  | 37           | 17 085                      | 20 220                | 42                             | 352                    | 435                                      | 4 070                | MetNIHLB             |
|            | Sheemahant          | CWHms2 Cw Good                  | 33           | 76                          | 109                   | 53                             | 9,404                  | 15,524                                   | -42                  | Not Met              |
|            |                     | CWHms2 Cw Med                   | 419          | 277                         | 696                   | 23                             | 160                    | 211                                      | 51                   | Met THLB             |
|            |                     | CWHms2 Cw Poor                  | 29           | 85                          | 114                   | 26                             | 30                     | 81                                       | 52                   | Met NTHLB            |
|            |                     | CWHms2 Fd Good<br>CWHms2 Fd Med | 269          | 213<br>312                  | 482<br>882            | 53<br>17                       | 255<br>150             | 40<br>228                                | -216<br>79           | NOT MET<br>Met THI B |
|            |                     | CWHms2 Fd Poor                  | 73           | 657                         | 729                   | 17                             | 124                    | 194                                      | 70                   | Met NTHLB            |
|            |                     | CWHms2 HB Good                  | 284          | 208                         | 493                   | 23                             | 113                    | 0                                        | -113                 | Not Met              |
|            |                     | CWHms2 HB Med<br>CWHms2 HB Poor | 1,847<br>30  | 1,167<br>371                | 3,015<br>410          | 23                             | 693<br>04              | 1,255                                    | 562<br>259           | Met NTHLB            |
|            |                     | CWHms2 S Good                   | 40           | 381                         | 421                   | 61                             | 257                    | 291                                      | 34                   | Met NTHLB            |
|            |                     | CWHms2 S Med                    | 34           | 67                          | 101                   | 61                             | 61                     | 23                                       | -38                  | Not Met              |
|            |                     | CWHvm3 Cw Med                   | 4            | 0                           | 4                     | 28                             | 1                      | 0                                        | -1                   | Not Met              |
|            |                     | CWHvm3 HB Good                  | 25<br>65     | 5<br>5                      | 70                    | 25                             | 18                     | ∠5<br>0                                  | -18                  | Not Met              |
|            |                     | CWHvm3 HB Med                   | 141          | 188                         | 329                   | 25                             | 82                     | 238                                      | 156                  | Met NTHLB            |
|            |                     | CWHvm3 HB Poor                  | 18           | 265                         | 283                   | 25                             | 71                     | 265                                      | 194                  | Met NTHLB            |
|            |                     | CWHws2 CW Med                   | 17           | ر<br>164                    | 24                    | 50<br>42                       | 12                     | 19<br>32                                 | -83                  | Not Met              |
|            |                     | CWHws2 Fd Poor                  | 4            | 137                         | 141                   | 22                             | 31                     | 26                                       | -5                   | Not Met              |
|            |                     | CWHws2 HB Good                  | 96           | 24                          | 119                   | 60                             | 72                     | 0                                        | -72                  | Not Met              |
|            |                     | CWHws2 HB Med                   | 754          | 1,577                       | 2,331                 | 26                             | 606<br>592             | 1,768                                    | 1,162                |                      |
|            |                     | MHmm1 HB Good                   | 14           | ∠,001<br>1                  | 2,242                 | 20<br>59                       |                        | 2,090                                    | -9                   | Not Met              |
|            |                     | MHmm1 HB Med                    | 3            | 31                          | 34                    | 25                             | 9                      | 34                                       | 26                   | Met NTHLB            |
|            |                     | MHmm2 HB Med                    | 103          | 592                         | 695                   | 25                             | 174                    | 686                                      | 512                  | Met NTHLB            |
|            | Sheemahant Total    |                                 | 17<br>5.248  | 3,064                       | 3,081                 | 49                             | 5 204                  | 2,900                                    | 5 481                | IVIET IN I HLB       |
|            | Sheep Passage       | CMAunp Cw Poor                  | 1            | 2                           | 4                     | 26                             | 1                      | 4                                        | 3                    | Met NTHLB            |
|            |                     | CWHvm1 Cw Med                   | 298          | 1,210                       | 1,508                 | 28                             | 422                    | 897                                      | 475                  | Met NTHLB            |
| I I        | l                   | CWHvm1 Cw Poor                  | 1,260        | 5,508                       | 6,768                 | 28                             | 1,895                  | 6,045                                    | 4,150                | Met NTHLB            |

| MO<br>2009 | Landscape Unit                       | Site Series<br>Surrogate          | THLB<br>(ha)     | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ba) | Surplus<br>/ Deficit | Current<br>Condition |
|------------|--------------------------------------|-----------------------------------|------------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|----------------------|
|            |                                      | CWHvm1 HB Med                     | 427              | 3,802                       | 4,229                 | 25                             | 1,057                  | 2,814                                    | 1,757                | Met NTHLB            |
|            |                                      | CWHvm1 HB Poor                    | 8<br>77          | 2,694                       | 2,702                 | 25                             | 676<br>147             | 2,235                                    | 1,560                | Met NTHLB            |
|            |                                      | CWHvm2 Cw Med                     | 1                | 143                         | 144                   | 23                             | 40                     | 430                                      | 12                   | Met NTHLB            |
|            |                                      | CWHvm2 Cw Poor                    | 101              | 721                         | 822                   | 28                             | 230                    | 815                                      | 585                  | Met NTHLB            |
|            |                                      | CWHvm2 HB Med                     | 33               | 470                         | 503                   | 25                             | 126                    | 365                                      | 239                  | Met NTHLB            |
|            | Sheen Passage Total                  | CWHVM2 S Med                      | 2 211            | 41                          | 17 313                | 59<br>30                       | 20<br>4 620            | 13 710                                   | 9 089                | Met NTHLB            |
|            | Sumquolt                             | CWHms2 Cw Med                     | 65               | 8                           | 73                    | 38                             | 28                     | 73                                       | 45                   | Met THLB             |
|            |                                      | CWHms2 Cw Poor                    | 9                | 3                           | 12                    | 44                             | 5                      | 0                                        | -5                   | Not Met              |
|            |                                      | CWHms2 Fd Med                     | 38<br>111        | 40<br>70                    | 77<br>181             | 29                             | 22                     | 0                                        | -22                  | Not Met              |
|            |                                      | CWHms2 HB Med                     | 350              | 961                         | 1,310                 | 38                             | 498                    | 598                                      | 100                  | Met THLB             |
|            |                                      | CWHms2 S Good                     | 4                | 71                          | 76                    | 61                             | 46                     | 35                                       | -11                  | Not Met              |
|            |                                      | CWHws2 Cw Med                     | 51<br>65         | 21                          | 72                    | 50<br>60                       | 36<br>53               | 72                                       | 36<br>53             | Met THLB             |
|            |                                      | CWHws2 HB Good                    | 430              | 2.436                       | 2.866                 | 43                             | 1.232                  | 1.692                                    | -33<br>460           | Met NTHLB            |
|            |                                      | CWHws2 HB Poor                    | 3                | 2,069                       | 2,073                 | 43                             | 891                    | 1,029                                    | 138                  | Met NTHLB            |
|            | Summuelt Total                       | MHmm2 HB Med                      | 16               | 393                         | 409                   | 42                             | 172                    | 274                                      | 102                  | Met NTHLB            |
|            | Sunquoit Totai<br>Sutslem/Skowquiltz | CWHms2 Cw Good                    | 1,142            | 0,095                       | 1,237                 | 53                             | 3,053                  | 3,773                                    | -8                   | Not Met              |
|            | outoion#ononquinz                    | CWHms2 Cw Med                     | 6                | 509                         | 515                   | 38                             | 196                    | 435                                      | 239                  | Met NTHLB            |
|            |                                      | CWHms2 Cw Poor                    | 50               | 508                         | 558                   | 44                             | 246                    | 371                                      | 125                  | Met NTHLB            |
|            |                                      | CWHms2 Fd Good                    | 17<br>15         | 0<br>878                    | 17<br>803             | 53<br>20                       | 9<br>250               | 0<br>247                                 | -9<br>-12            | Not Met              |
|            |                                      | CWHms2 HB Good                    | 13               | 152                         | 169                   | 38                             | 239<br>64              | 247                                      | -64                  | Not Met              |
|            |                                      | CWHms2 HB Med                     | 68               | 3,952                       | 4,020                 | 38                             | 1,528                  | 2,056                                    | 529                  | Met NTHLB            |
|            |                                      | CWHms2 HB Poor                    | 4                | 1,273                       | 1,278                 | 38                             | 486                    | 837                                      | 351                  | Met NTHLB            |
|            |                                      | CWHIIIS2 S Med<br>CWHym3 Cw Poor  | 20               | 53<br>470                   | 472                   | 47                             | 45<br>222              | 383                                      | 161                  | Met NTHLB            |
|            |                                      | CWHvm3 Fd Poor                    | 49               | 160                         | 209                   | 35                             | 73                     | 39                                       | -34                  | Not Met              |
|            | Sutslem/Skowquiltz T                 | otal                              | 265              | 7,955                       | 8,220                 | 43                             | 3,135                  | 4,422                                    | 1,287                |                      |
|            | Swindle                              | CMAunp HB Med                     | 3                | 0                           | 3                     | 59<br>68                       | 2                      | 0<br>148                                 | -2                   | Not Met              |
|            |                                      | CWHvh2 Cw Ned                     | 1,264            | 7,530                       | 8,794                 | 68                             | 5,980                  | 5,137                                    | -842                 | Not Met              |
|            |                                      | CWHvh2 HB Med                     | 481              | 761                         | 1,243                 | 68                             | 845                    | 537                                      | -308                 | Not Met              |
|            |                                      | CWHvh2 HB Poor                    | 17               | 1,859                       | 1,876                 | 68<br>65                       | 1,276                  | 1,575                                    | 299                  | Met NTHLB            |
|            | Swindle Total                        |                                   | 2.676            | 11.573                      | 14.249                | 66                             | 9.653                  | 8.165                                    | -1.488               | NOLIVIEL             |
|            | Upper Kimsquit                       | CWHws2 Cw Good                    | 22               | 8                           | 30                    | 50                             | 15                     | 0                                        | -15                  | Not Met              |
|            |                                      | CWHws2 Cw Med                     | 10               | 25                          | 34                    | 50                             | 17                     | 0                                        | -17                  | Not Met              |
|            |                                      | CWHws2 Fu Pool                    | o<br>531         | 250                         | 43<br>781             | 30<br>60                       | 469                    | 43                                       | _20<br>-368          | Not Met              |
|            |                                      | CWHws2 HB Med                     | 1,485            | 3,970                       | 5,456                 | 43                             | 2,346                  | 3,725                                    | 1,379                | Met NTHLB            |
|            |                                      | CWHws2 HB Poor                    | 235              | 3,519                       | 3,754                 | 43                             | 1,614                  | 1,652                                    | 38                   | Met THLB             |
|            |                                      | CWHWS2 S GOOd<br>CWHws2 S Med     | 21               | 120<br>197                  | 141<br>266            | 60<br>60                       | 85<br>160              | 43                                       | -41                  | Not Met              |
|            |                                      | MHmm2 HB Good                     | 7                | 0                           | 7                     | 42                             | 3                      | 0                                        | -3                   | Not Met              |
|            |                                      | MHmm2 HB Med                      | 43               | 359                         | 402                   | 42                             | 169                    | 338                                      | 170                  | Met NTHLB            |
|            | Linner Kimsquit Total                | MHmm2 HB Poor                     | 2 / 33           | 2,956                       | 2,957                 | 49                             | 1,449                  | 1,063                                    | -380                 | Not Met              |
|            | Washwash                             | CWHms2 Cw Med                     | 2,733            | 278                         | 279                   | 53                             | 148                    | 50                                       | -98                  | Not Met              |
|            |                                      | CWHms2 Fd Good                    | 47               | 69                          | 116                   | 53                             | 61                     | 57                                       | -4                   | Not Met              |
|            |                                      | CWHms2 Fd Med                     | 44               | 347                         | 391                   | 41<br>53                       | 160                    | 168                                      | 8<br>251             | Met NTHLB            |
|            |                                      | CWHms2 HB Med                     | 94<br>88         | 2,634                       | 2,722                 | 53                             | 1,443                  | 1,386                                    | -251                 | Not Met              |
|            |                                      | CWHvm3 Cw Med                     | 24               | 9                           | 33                    | 65                             | 22                     | 7                                        | -15                  | Not Met              |
|            |                                      | CWHvm3 Cw Poor                    | 17               | 145                         | 162                   | 65                             | 105                    | 159                                      | 54                   | Met NTHLB            |
|            |                                      | CWHVIII3 Fu Med<br>CWHvm3 HB Good | 30               | 24<br>20                    | 00<br>51              | 49<br>59                       | 43<br>30               | 10                                       | -25                  | Not Met              |
|            |                                      | CWHvm3 HB Med                     | 134              | 2,268                       | 2,402                 | 59                             | 1,417                  | 1,760                                    | 343                  | Met NTHLB            |
|            |                                      | CWHvm3 HB Poor                    | 1                | 2,136                       | 2,138                 | 59                             | 1,261                  | 1,769                                    | 508                  | Met NTHLB            |
|            |                                      | MHMM1 HB Med                      | 4 <i>1</i><br>14 | 317<br>2 383                | 364<br>2 397          | 59<br>59                       | 215<br>1 414           | 271<br>2.057                             | 57<br>643            | Met NTHLB            |
|            | Washwash Total                       |                                   | 607              | 11,031                      | 11,638                | 56                             | 6,582                  | 7,715                                    | 1,133                |                      |
|            | Yeo                                  | CWHvh2 Cw Med                     | 92               | 565                         | 657                   | 29                             | 191                    | 486                                      | 295                  | Met NTHLB            |
|            |                                      | CWHvh2 Cw Poor                    | 584              | 4,151                       | 4,735                 | 29                             | 1,373                  | 3,439                                    | 2,066                | Met NTHLB            |
|            |                                      | CWHvh2 HB Med                     | 630              | 2,090                       | 2,720                 | 29                             | 789                    | 2,313                                    | 1.524                | Met NTHLB            |
|            |                                      | CWHvh2 HB Poor                    | 16               | 900                         | 916                   | 29                             | 266                    | 671                                      | 406                  | Met NTHLB            |
| CNIC T     | Yeo Total                            |                                   | 1,347            | 7,708                       | 9,054                 | 28                             | 2,625                  | 6,909                                    | 4,284                |                      |
| SCC        | Allison                              | CWHyh1 Cw Poor                    | 99,231<br>37     | 390,878<br>27               | 490,108               | 38<br>29                       | 190,144                | 523,587<br>64                            | 133,442              | Met NTHLB            |
|            | Allison Total                        |                                   | 37               | 27                          | 64                    | 29                             | 19                     | 64                                       | 46                   |                      |
|            | Bella Coola                          | CWHds2 Cw Good                    | 24               | 7                           | 31                    | 22                             | 7                      | 0                                        | -7                   | Not Met              |

| MO<br>2009 | Landscape Unit    | Site Series<br>Surrogate          | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition |
|------------|-------------------|-----------------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|----------------------|
|            |                   | CWHds2 Cw Med                     | 214          | 166                         | 380                   | 22                             | 83                     | 106                                      | 23                   | Met THLB             |
|            |                   | CWHds2 Cw Poor                    | 62           | 38                          | 100                   | 60                             | 60                     | 33                                       | -27                  | Not Met              |
|            |                   | CWHds2 Fd Good                    | 45           | 68                          | 113                   | 42                             | 47                     | 0                                        | -47                  | Not Met              |
|            |                   | CWHusz Fullweu<br>CWHus2 Ed Poor  | 02<br>43     | 300                         | 230<br>442            | 22                             | 43                     | 40<br>55                                 | -42                  | Not Met              |
|            |                   | CWHds2 HB Good                    | 66           | 58                          | 124                   | 60                             | 75                     | 0                                        | -75                  | Not Met              |
|            |                   | CWHds2 HB Med                     | 149          | 724                         | 873                   | 26                             | 227                    | 114                                      | -113                 | Not Met              |
|            |                   | CWHds2 S Med                      | 19           | 9                           | 28                    | 60                             | 17                     | 1                                        | -16                  | Not Met              |
|            |                   | CWH0S2 S POOPPI<br>CWHms2 Cw Med  | 5<br>50      | 21                          | 71                    | 12                             | 20<br>38               | 2                                        | -18                  | Not Met              |
|            |                   | CWHms2 HB Med                     | 23           | 139                         | 162                   | 23                             | 37                     | 30                                       | -7                   | Not Met              |
|            |                   | CWHws2 Cw Med                     | 14           | 0                           | 14                    | 50                             | 7                      | 0                                        | -7                   | Not Met              |
|            |                   | CWHws2 Cw Poor                    | 23           | 24                          | 47                    | 60                             | 28                     | 0                                        | -28                  | Not Met              |
|            |                   | CWHws2 Fd Med<br>CWHws2 Fd Poor   | 4<br>12      | 27<br>46                    | 58                    | 22                             | 13                     | 0                                        | -ə<br>-13            | Not Met              |
|            |                   | CWHws2 HB Med                     | 5            | 229                         | 234                   | 26                             | 61                     | 43                                       | -18                  | Not Met              |
|            |                   | MHmm2 Fd Med                      | 4            | 0                           | 4                     | 49                             | 2                      | 0                                        | -2                   | Not Met              |
|            | Pollo Coolo Total | MHmm2 Fd Poor                     | 11           | 2 207                       | 2 1 2 2               | 49                             | 6<br>975               | 0                                        | -6                   | Not Met              |
|            | Clavton           | CWHms2 Cw Med                     | 31           | 67                          | 98                    | 53                             | 52                     | 31                                       | -444                 | Not Met              |
|            |                   | CWHms2 Fd Good                    | 17           | 4                           | 21                    | 22                             | 5                      | 8                                        | 3                    | Met THLB             |
|            |                   | CWHms2 Fd Med                     | 183          | 52                          | 235                   | 17                             | 40                     | 73                                       | 33                   | Met THLB             |
|            |                   | CWHMS2 Fa Poor<br>CWHms2 HB Good  | 257<br>27    | 397                         | 054<br>33             | 23                             | 8                      | 88<br>0                                  | -23                  | Not Met              |
|            |                   | CWHms2 HB Med                     | 2            | 75                          | 78                    | 23                             | 18                     | 56                                       | 38                   | Met NTHLB            |
|            |                   | CWHws2 Cw Med                     | 8            | 0                           | 8                     | 50                             | 4                      | 0                                        | -4                   | Not Met              |
|            |                   | CWHws2 Fd Good                    | 1            | 0                           | 1                     | 18                             | 0                      | 1                                        | 1                    |                      |
|            |                   | CWHws2 Fd Med<br>CWHws2 Fd Poor   | 24           | 209                         | 233                   | 22                             | 51                     | 12                                       | -41                  | Not Met              |
|            |                   | CWHws2 HB Good                    | 14           | 19                          | 34                    | 26                             | 9                      | 0                                        | -9                   | Not Met              |
|            |                   | CWHws2 HB Med                     | 245          | 241                         | 486                   | 26                             | 126                    | 313                                      | 187                  | Met NTHLB            |
|            |                   | MHmm2 Cw Med                      | 20<br>4      | 178                         | 198                   | 20<br>65                       | 52<br>2                | 4                                        | -48<br>-2            | Not Met              |
|            |                   | MHmm2 Fd Poor                     | 3            | 21                          | 24                    | 49                             | 12                     | 0                                        | -11                  | Not Met              |
|            |                   | MHmm2 HB Med                      | 57           | 264                         | 321                   | 59                             | 189                    | 104                                      | -85                  | Not Met              |
|            | Clayton Total     | MHmm2 HB Poor                     | /<br>909     | 2 178                       | 64b<br>3.087          | 25                             | 161<br>843             | 715                                      | -147                 | Not Met              |
|            | Draney            | CWHvh2 Cw Good                    | 492          | 22                          | 514                   | 63                             | 324                    | 0                                        | -324                 | Not Met              |
|            |                   | CWHvh2 Cw Med                     | 2,998        | 1,153                       | 4,151                 | 29                             | 1,204                  | 2,452                                    | 1,249                | Met THLB             |
|            |                   | CWHvh2 Cw Poor                    | 5,521        | 13,710                      | 19,231                | 29                             | 5,577                  | 18,089                                   | 12,512               | Met NTHLB            |
|            |                   | CWHvh2 HB Med                     | 1,493        | 1,275                       | 2,768                 | 29                             | 803                    | 464                                      | -339                 | Not Met              |
|            |                   | CWHvh2 HB Poor                    | ່ 1          | 44                          | 45                    | 29                             | 13                     | 20                                       | 7                    | Met NTHLB            |
|            |                   | CWHvh2 S Good                     | 20           | 5                           | 26                    | 25                             | 6                      | 16                                       | 9                    | Met THLB             |
|            |                   | CWHvh2 S Med                      | 50<br>2      | 15                          | 200                   | 59<br>12                       | 38                     | 2                                        | -30                  | Not Met<br>Met THI B |
|            |                   | CWHvm1 Cw Good                    | 15           | Ő                           | 15                    | 25                             | 4                      | 0                                        | -4                   | Not Met              |
|            |                   | CWHvm1 Cw Med                     | 304          | 502                         | 806                   | 28                             | 226                    | 643                                      | 418                  | Met NTHLB            |
|            |                   | CWHvm1 Cw Poor                    | 908<br>134   | 812                         | 1,720                 | 28<br>25                       | 482                    | 1,603<br>57                              | 1,122                | Met NTHLB            |
|            |                   | CWHvm2 Cw Good                    | 24           | 200                         | 24                    | 25                             | 6                      | 0                                        | -40                  | Not Met              |
|            |                   | CWHvm2 Cw Med                     | 259          | 120                         | 379                   | 28                             | 106                    | 351                                      | 244                  | Met THLB             |
|            |                   | CWHvm2 Cw Poor                    | 1,631        | 3,246                       | 4,877                 | 28                             | 1,366                  | 4,715                                    | 3,349                | Met NTHLB            |
|            |                   | CWHVI12 HB Med<br>CWHvm2 S PoorPl | 124          | 220                         | 350                   | 25<br>29                       | 00<br>1                | 204<br>2                                 | 107                  | Met THI B            |
|            |                   | MHmm1 Cw Med                      | 26           | 1                           | 27                    | 65                             | 18                     | 27                                       | 10                   | Met THLB             |
|            |                   | MHmm1 Cw Poor                     | 68           | 192                         | 259                   | 28                             | 73                     | 259                                      | 187                  | Met NTHLB            |
|            |                   | MHwh1 Cw Med                      | 19<br>376    | 25                          | 44<br>767             | 68<br>20                       | 30                     | 44<br>744                                | 14<br>522            | Met I HLB            |
|            |                   | MHwh1 HB Med                      | 6            | 47                          | 53                    | 68                             | 36                     | 53                                       | 17                   | Met NTHLB            |
|            | Draney Total      |                                   | 14,818       | 22,401                      | 37,219                | 35                             | 10,894                 | 29,797                                   | 18,903               |                      |
|            | Labouchere        | CWHms2 Cw Med                     | 260          | 555                         | 815                   | 53                             | 432                    | 628                                      | 196                  | Met NTHLB            |
|            |                   | CWHms2 CW Poor<br>CWHms2 HB Good  | 206<br>15    | 032<br>37                   | 1,030                 | 43<br>38                       | 440                    | 000                                      | -19                  | Not Met              |
|            |                   | CWHms2 HB Med                     | 663          | 2,274                       | 2,938                 | 38                             | 1,116                  | 1,558                                    | 442                  | Met NTHLB            |
|            |                   | CWHms2 HB Poor                    | 43           | 834                         | 877                   | 38                             | 333                    | 577                                      | 244                  | Met NTHLB            |
|            |                   | CWHms2 S Med                      | 49<br>15     | 64<br>177                   | 112<br>102            | 61<br>47                       | 69<br>00               | 112                                      | 44                   |                      |
|            |                   | CWHvm3 Cw Poor                    | 26           | 307                         | 332                   | 47                             | 156                    | 94<br>175                                | 19                   | Met NTHLB            |
|            |                   | CWHvm3 HB Med                     | 374          | 2,291                       | 2,665                 | 42                             | 1,119                  | 1,764                                    | 644                  | Met NTHLB            |
|            |                   | CWHvm3 HB Poor                    | 14           | 1,353                       | 1,367                 | 42                             | 574                    | 1,039                                    | 464                  | Met NTHLB            |
|            | Labouchere Total  |                                   | 5<br>1.670   | 8,799                       | 10.470                | 41                             | 4.356                  | 6.630                                    | 2.274                | IVIEL IN I HLB       |
|            | Nekite            | CWHvm1 Cw Good                    | 60           | 3                           | 63                    | 58                             | 36                     | 0,000                                    | -36                  | Not Met              |
|            |                   | CWHvm1 Cw Med                     | 1,076        | 1,817                       | 2,893                 | 65                             | 1,880                  | 2,435                                    | 555                  | Met THLB             |
|            |                   | CWHvm1 Cw Poor                    | 1,317        | 3,496                       | 4,813                 | 65                             | 3,128                  | 4,677                                    | 1,549                | Met N FHLB           |

| MO<br>2009 | Landscape Unit                            | Site Series<br>Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                         | THLB<br>(ha)                                                                                                                                                                                                                                                      | PFLB<br>non<br>THLB<br>(ha)                                                                                                                                              | Total<br>PFLB<br>(ha)                                                                                                                                                                      | Old<br>Growth<br>Target<br>(%)                                                                                                                                 | Target<br>Area<br>(ha)                                                                                                                                        | Current<br>Old<br>Growth<br>Area<br>(ha)                                                                                                                        | Surplus<br>/ Deficit                                                                                                                                                           | Current<br>Condition                                                                                                                                                                                                                                                              |
|------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                           | CWHvm1 HB Good<br>CWHvm1 HB Med<br>CWHvm1 HB Poor<br>CWHvm1 S Good<br>CWHvm1 S Med<br>CWHvm1 S PoorPI<br>CWHvm2 Cw Med<br>CWHvm2 CW Poor<br>CWHvm2 HB Good<br>CWHvm2 HB Med<br>CWHvm2 HB Poor<br>MHmm1 Cw Med<br>MHmm1 Cw Poor                                                                                                                                                                                                                   | 180<br>1,645<br>42<br>44<br>59<br>751<br>129<br>751<br>14<br>141<br>4<br>3<br>44                                                                                                                                                                                  | 266<br>3,421<br>330<br>469<br>182<br>5<br>655<br>6,248<br>23<br>1,863<br>998<br>12<br>1,239                                                                              | 446<br>5,066<br>372<br>513<br>241<br>6<br>784<br>6,999<br>36<br>2,004<br>1,003<br>15<br>1,283                                                                                              | 58<br>58<br>58<br>58<br>29<br>65<br>65<br>59<br>59<br>59<br>65<br>65                                                                                           | 259<br>2,938<br>216<br>298<br>140<br>2510<br>4,549<br>21<br>1,183<br>591<br>10<br>834                                                                         | 82<br>3,356<br>207<br>404<br>170<br>6<br>8,882<br>13<br>1,775<br>830<br>15<br>1,225                                                                             | -177<br>417<br>-9<br>106<br>31<br>5<br>266<br>2,332<br>-8<br>592<br>238<br>592<br>238<br>5<br>391                                                                              | Not Met<br>Met THLB<br>Not Met<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB                                                                                                                                            |
|            | Nekite Total                              | MHMM1 HB Med                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 5 1 9                                                                                                                                                                                                                                                           | 21 123                                                                                                                                                                   | 26 642                                                                                                                                                                                     | 59                                                                                                                                                             | 16 657                                                                                                                                                        | 22 933                                                                                                                                                          | 6 276                                                                                                                                                                          | MELINTHLB                                                                                                                                                                                                                                                                         |
|            | Nusatsum                                  | CWHds2 HB Good<br>CWHds2 HB Med<br>CWHws2 HB Good<br>CWHws2 HB Med<br>MHmm2 Fd Med                                                                                                                                                                                                                                                                                                                                                               | 14<br>9<br>1<br>112<br>1                                                                                                                                                                                                                                          | 0<br>21<br>7<br>1,272<br>10                                                                                                                                              | 14<br>30<br>9<br>1,384<br>11                                                                                                                                                               | 60<br>26<br>26<br>26<br>49                                                                                                                                     | 8<br>8<br>2<br>360<br>6                                                                                                                                       | 0<br>2<br>0<br>233<br>0                                                                                                                                         | -8<br>-5<br>-2<br>-127<br>-6                                                                                                                                                   | Not Met<br>Not Met<br>Not Met<br>Not Met<br>Not Met                                                                                                                                                                                                                               |
|            | Nusatsum Total                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 137                                                                                                                                                                                                                                                               | 1,310                                                                                                                                                                    | 1,448                                                                                                                                                                                      | 37                                                                                                                                                             | 384                                                                                                                                                           | 235                                                                                                                                                             | -149                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |
|            | Saloompt<br>Saloompt Total<br>Smith Sound | CWHds2 Cw Med<br>CWHds2 Cw Poor<br>CWHds2 Fd Poor<br>CWHds2 HB Good<br>CWHds2 HB Poor<br>CWHds2 HB Poor<br>CWHms2 Fd Med<br>CWHms2 Fd Med<br>CWHms2 Fd Med<br>CWHms2 HB Med<br>CWHms2 S Good<br>CWHws2 Cw Med<br>CWHws2 Cw Poor<br>CWHws2 Fd Good<br>CWHws2 Fd Med<br>CWHws2 Fd Poor<br>CWHws2 Fd Poor<br>CWHws2 HB Poor<br>CWHws2 HB Poor<br>CWHws2 HB Poor<br>CWHws2 HB Med<br>CWHws2 HB Poor<br>CWHws2 S Med<br>MHmm2 HB Med<br>MHmm2 HB Poor | 27<br>5<br>59<br>8<br>37<br>11<br>30<br>735<br>3<br>41<br>27<br>130<br>735<br>3<br>86<br>33<br>16<br>2<br>27<br>21<br>898<br>29<br>29<br>7<br>8<br>8<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>22<br>8<br>22<br>8<br>22<br>8<br>22<br>8<br>22<br>8 | 78<br>16<br>17<br>36<br>113<br>25<br>57<br>92<br>88<br>1,137<br>19<br>97<br>10<br>0<br>21<br>18<br>1,119<br>1,119<br>1,119<br>1,119<br>482<br>4,852<br>4,852<br>2<br>582 | 104<br>21<br>76<br>44<br>151<br>36<br>49<br>98<br>119<br>219<br>1,871<br>4<br>235<br>130<br>26<br>2<br>48<br>39<br>2,017<br>1,148<br>38<br>156<br>490<br>7,121<br>84<br>2                  | 22<br>60<br>26<br>26<br>26<br>53<br>17<br>17<br>23<br>23<br>61<br>50<br>60<br>18<br>18<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>59<br>25<br>35<br>27<br>20 | 23<br>13<br>17<br>26<br>39<br>9<br>26<br>17<br>20<br>50<br>430<br>2<br>117<br>78<br>5<br>0<br>11<br>10<br>524<br>298<br>23<br>92<br>122<br>1,955<br>23<br>600 | 20<br>0<br>73<br>0<br>86<br>34<br>0<br>68<br>0<br>825<br>0<br>0<br>199<br>97<br>0<br>0<br>0<br>48<br>0<br>1,600<br>1,130<br>38<br>137<br>490<br>4,846<br>0<br>0 | -3<br>-13<br>56<br>-26<br>46<br>25<br>-26<br>-17<br>48<br>-50<br>395<br>-2<br>81<br>20<br>-5<br>0<br>38<br>-10<br>1,076<br>831<br>15<br>45<br>367<br>2,892<br>-23<br>3<br>1047 | Not Met<br>Not Met<br>Met THLB<br>Not Met<br>Met NTHLB<br>Not Met<br>Not Met<br>Not Met<br>Not Met<br>Met NTHLB<br>Not Met<br>Met THLB<br>Not Met<br>Met NTHLB<br>Not Met<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB |
|            |                                           | CWHvh1 Cw Med<br>CWHvh1 Cw Poor<br>CWHvh1 HB Good<br>CWHvh1 HB Med<br>CWHvh1 HB Poor<br>CWHvh2 Cw Poor<br>CWHvm1 Cw Poor                                                                                                                                                                                                                                                                                                                         | 828<br>2,078<br>90<br>135<br>54<br>4<br>4                                                                                                                                                                                                                         | 1,583<br>11,869<br>157<br>790<br>181<br>7<br>2                                                                                                                           | 2,411<br>13,948<br>247<br>925<br>235<br>10<br>6                                                                                                                                            | 29<br>29<br>25<br>29<br>68<br>29<br>28                                                                                                                         | 699<br>4,045<br>62<br>268<br>160<br>3<br>2                                                                                                                    | 1,716<br>10,611<br>0<br>303<br>70<br>10<br>6                                                                                                                    | 1,017<br>6,567<br>-62<br>35<br>-89<br>7<br>4                                                                                                                                   | Met NTHLB<br>Met NTHLB<br>Not Met<br>Met NTHLB<br>Not Met<br>Met NTHLB<br>Met NTHLB                                                                                                                                                                                               |
|            | Smitley/Noeick                            | CWHms2 Cw Good<br>CWHms2 Cw Med<br>CWHms2 Cw Poor<br>CWHms2 Fd Good<br>CWHms2 Fd Med<br>CWHms2 HB Poor<br>CWHms2 HB Med<br>CWHms2 HB Poor<br>CWHms2 S Med<br>CWHms2 S PoorPI<br>CWHws2 Cw Good<br>CWHws2 Fd Poor<br>CWHws2 Fd Poor<br>CWHws2 HB Med<br>CWHws2 HB Poor<br>CWHws2 HB Poor<br>CWHws2 S PoorPI<br>MHms2 S PoorPI<br>MHmm2 HB Med                                                                                                     | 3,216<br>39<br>11<br>7<br>76<br>221<br>55<br>217<br>579<br>1<br>14<br>35<br>35<br>35<br>36<br>36<br>21<br>1,119<br>15<br>5<br>9<br>65                                                                                                                             | 14,651<br>4<br>4<br>0<br>51<br>183<br>139<br>47<br>728<br>249<br>22<br>57<br>0<br>46<br>131<br>26<br>2,271<br>1,138<br>1<br>145<br>1,117                                 | 17,867<br>42<br>15<br>7<br>128<br>405<br>194<br>263<br>1,306<br>250<br>36<br>93<br>3<br>1,306<br>250<br>36<br>93<br>3<br>3<br>101<br>167<br>48<br>3,390<br>1,152<br>7<br>7<br>164<br>1,182 | 33<br>38<br>53<br>43<br>29<br>29<br>38<br>38<br>38<br>61<br>21<br>36<br>50<br>30<br>30<br>43<br>43<br>43<br>43<br>43<br>59                                     | 5,261<br>16<br>8<br>3<br>49<br>117<br>56<br>100<br>496<br>95<br>22<br>19<br>1<br>51<br>50<br>17<br>1,458<br>495<br>3<br>34<br>697                             | 12,717<br>0<br>12<br>0<br>42<br>59<br>0<br>447<br>141<br>0<br>24<br>0<br>82<br>24<br>0<br>82<br>24<br>0<br>1,768<br>559<br>0<br>74<br>460                       | 7,456<br>-16<br>4<br>-3<br>-49<br>-75<br>2<br>-100<br>-49<br>46<br>-22<br>-26<br>-11<br>322<br>-26<br>-17<br>310<br>64<br>-3<br>40<br>-238                                     | Not Met<br>Met THLB<br>Not Met<br>Not Met<br>Not Met<br>Not Met<br>Not Met<br>Not Met<br>Met THLB<br>Not Met<br>Met THLB<br>Not Met<br>Met THLB<br>Met NTHLB<br>Met NTHLB<br>Not Met<br>Met NTHLB                                                                                 |
|            | Smitley/Noeick Total                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,592                                                                                                                                                                                                                                                             | 6,359                                                                                                                                                                    | 8,951                                                                                                                                                                                      | 39                                                                                                                                                             | 3,788                                                                                                                                                         | 3,692                                                                                                                                                           | -95                                                                                                                                                                            |                                                                                                                                                                                                                                                                                   |
|            | SHIUKEHOUSE                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                 | 41                                                                                                                                                                       | 45                                                                                                                                                                                         | 29                                                                                                                                                             | 13                                                                                                                                                            | 41                                                                                                                                                              | I 28                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |

| MO<br>2009 | Landscape Unit       | Site Series<br>Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                           | THLB<br>(ha)                                                                                                                                                                                     | PFLB<br>non<br>THLB<br>(ha)                                                                                                                                               | Total<br>PFLB<br>(ha)                                                                                                                                                                                                         | Old<br>Growth<br>Target<br>(%)                                                                                                         | Target<br>Area<br>(ha)                                                                                                                                                         | Current<br>Old<br>Growth<br>Area                                                                                                                                | Surplus<br>/ Deficit                                                                                                                                                                                                                                                     | Current<br>Condition                                                                                                                                                                                                                                                                                                                                                                          |
|------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Smokohouse Total     | CWHvh1 Cw Poor<br>CWHvm1 Cw Med<br>CWHvm1 Cw Poor<br>CWHvm1 HB Good<br>CWHvm1 HB Med<br>CWHvm2 Cw Med<br>CWHvm2 Cw Poor<br>CWHvm2 HB Med<br>MHmm1 Cw Poor                                                                                                                                                                                                                                                                                                          | 2<br>528<br>1,552<br>5<br>189<br>20<br>508<br>4<br>12                                                                                                                                            | 3<br>1,764<br>4,844<br>147<br>2,230<br>145<br>4,584<br>1,132<br>583<br>15 475                                                                                             | 6<br>2,292<br>6,395<br>152<br>2,420<br>165<br>5,092<br>1,136<br>596                                                                                                                                                           | 29<br>28<br>25<br>25<br>28<br>28<br>28<br>25<br>28<br>25<br>28                                                                         | 2<br>642<br>1,791<br>38<br>605<br>46<br>1,426<br>284<br>167                                                                                                                    | 6<br>1,698<br>5,987<br>17<br>1,577<br>113<br>4,842<br>979<br>566                                                                                                | 4<br>1,056<br>4,196<br>-21<br>972<br>67<br>3,416<br>694<br>399                                                                                                                                                                                                           | Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB<br>Met NTHLB                                                                                                                                                                                                                                                                                          |
|            | South Bentinck       | CWHms2 Cw Med<br>CWHms2 Fd Med<br>CWHms2 Fd Poor<br>CWHms2 HB Good<br>CWHms2 HB Med<br>CWHms2 HB Poor<br>CWHms2 S PoorPI<br>CWHws2 Cw Med<br>CWHws2 Fd Med<br>CWHws2 Fd Poor<br>CWHws2 HB Med<br>CWHws2 HB Poor<br>CWHws2 S Med<br>CWHws2 S PoorPI                                                                                                                                                                                                                 | 8<br>35<br>11<br>20<br>161<br>2<br>67<br>12<br>8<br>38<br>184<br>24<br>3<br>35<br>2                                                                                                              | 0<br>4<br>28<br>5<br>1,232<br>594<br>17<br>0<br>0<br>51<br>468<br>832<br>1<br>0                                                                                           | 8<br>39<br>25<br>1,393<br>596<br>84<br>12<br>8<br>89<br>652<br>855<br>4<br>355                                                                                                                                                | 53<br>29<br>29<br>38<br>38<br>21<br>50<br>30<br>43<br>43<br>60<br>21                                                                   | 4<br>11<br>10<br>530<br>226<br>18<br>6<br>2<br>281<br>368<br>3<br>3<br>7<br>7                                                                                                  | 8<br>16<br>7<br>867<br>344<br>75<br>12<br>7<br>38<br>384<br>421<br>1<br>355                                                                                     | 4<br>5<br>-10<br>338<br>117<br>57<br>5<br>6<br>103<br>53<br>-1<br>28                                                                                                                                                                                                     | Met THLB<br>Met THLB<br>Not Met<br>Met NTHLB<br>Met NTHLB<br>Met THLB<br>Met THLB<br>Met THLB<br>Met THLB<br>Met THLB<br>Not Met<br>Met THLB                                                                                                                                                                                                                                                  |
|            | South Pontinck Total | MHmm2 Cw Med<br>MHmm2 Fd Poor<br>MHmm2 HB Med<br>MHmm2 S PoorPl                                                                                                                                                                                                                                                                                                                                                                                                    | 9<br>2<br>12<br>3                                                                                                                                                                                | 2<br>24<br>137<br>0                                                                                                                                                       | 12<br>26<br>148<br>3                                                                                                                                                                                                          | 65<br>49<br>59<br>29                                                                                                                   | 8<br>13<br>88<br>1                                                                                                                                                             | 11<br>2<br>21<br>3                                                                                                                                              | 3<br>-10<br>-67<br>2                                                                                                                                                                                                                                                     | Met THLB<br>Not Met<br>Not Met<br>Met THLB                                                                                                                                                                                                                                                                                                                                                    |
|            | Taleomey/Asseek      | CMAunp HB Med<br>CWHms2 Cw Good<br>CWHms2 Cw Med<br>CWHms2 Fd Good<br>CWHms2 Fd Med<br>CWHms2 HB Poor<br>CWHms2 HB Poor<br>CWHms2 HB Poor<br>CWHms2 Cw Good<br>CWHws2 Cw Good<br>CWHws2 Cw Good<br>CWHws2 Cw Poor<br>CWHws2 Fd Med<br>CWHws2 Fd Poor<br>CWHws2 HB Poor<br>CWHws2 HB Poor<br>CWHws2 HB Poor<br>CWHws2 S Med<br>CWHws2 S Med<br>CWHws2 S Med<br>CWHws2 S PoorPI<br>MHmm2 Cw Poor<br>MHmm2 Fd Med<br>MHmm2 HB Poor<br>MHmm2 HB Poor<br>MHmm2 S PoorPI | 3<br>17<br>6<br>5<br>411<br>196<br>111<br>1,158<br>44<br>9<br>4<br>34<br>8<br>122<br>33<br>28<br>822<br>62<br>43<br>328<br>822<br>62<br>43<br>7<br>7<br>2<br>15<br>300<br>38<br>8<br>8<br>23,486 | 32<br>0<br>12<br>23<br>396<br>83<br>1,171<br>335<br>5<br>17<br>34<br>78<br>80<br>264<br>22<br>2,049<br>1,108<br>17<br>26<br>34<br>9<br>889<br>889<br>2,065<br>32<br>9,077 | 35<br>17<br>18<br>27<br>707<br>592<br>194<br>2,329<br>378<br>14<br>2,329<br>378<br>14<br>2,329<br>378<br>202<br>297<br>50<br>2,871<br>1,170<br>60<br>2,871<br>1,170<br>60<br>33<br>36<br>24<br>1,189<br>2,103<br>39<br>12,563 | 42<br>38<br>53<br>38<br>29<br>29<br>38<br>38<br>61<br>50<br>60<br>30<br>36<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43 | 15<br>6<br>10<br>205<br>172<br>74<br>885<br>144<br>885<br>144<br>9<br>9<br>8<br>34<br>51<br>107<br>21<br>1,235<br>503<br>36<br>7<br>7<br>23<br>12<br>701<br>883<br>11<br>5,224 | 35<br>0<br>35<br>0<br>256<br>126<br>0<br>370<br>233<br>14<br>0<br>17<br>31<br>77<br>94<br>0<br>1,414<br>639<br>17<br>20<br>25<br>11<br>580<br>976<br>4<br>4,941 | 20<br>-6<br>-7<br>-10<br>51<br>-45<br>-74<br>-515<br>89<br>5<br>-8<br>-18<br>-20<br>16<br>-13<br>-21<br>179<br>136<br>-19<br>13<br>2<br>-1<br>179<br>136<br>-19<br>13<br>2<br>-1<br>-122<br>92<br>-8<br>-8<br>-8<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10 | Met NTHLB<br>Not Met<br>Not Met<br>Met THLB<br>Not Met<br>Not Met<br>Not Met<br>Not Met<br>Not Met<br>Not Met<br>Not Met<br>Not Met<br>Met THLB<br>Not Met<br>Met NTHLB<br>Not Met<br>Met NTHLB<br>Not Met<br>Met THLB<br>Not Met<br>Met NTHLB<br>Not Met<br>Not Met |
|            | Twin                 | CWHms2 Cw Good<br>CWHms2 Cw Med<br>CWHms2 HB Good<br>CWHms2 HB Poor<br>CWHvm1 Fd Med<br>CWHvm1 Fd Med<br>CWHvm1 HB Good<br>CWHvm1 HB Med<br>CWHvm1 S Good<br>CWHvm1 S Med<br>CWHvm1 S PoorPI<br>CWHvm2 Cw Med<br>CWHvm2 HB Good<br>CWHvm2 HB Med<br>CWHvm3 HB Med<br>CWHvm3 HB Med<br>CWHvm3 HB Poor<br>MHmm1 HB Good                                                                                                                                              | 7<br>63<br>151<br>508<br>7<br>96<br>1<br>40<br>765<br>6<br>4<br>105<br>20<br>43<br>43<br>4<br>155<br>130<br>3<br>5                                                                               | 0<br>32<br>44<br>2,115<br>874<br>104<br>0<br>10<br>829<br>998<br>4<br>34<br>21<br>7<br>0<br>381<br>995<br>1,057<br>0                                                      | $\begin{array}{c} 7\\ 95\\ 195\\ 2,623\\ 882\\ 200\\ 1\\ 50\\ 1,593\\ 1,005\\ 8\\ 140\\ 40\\ 50\\ 4\\ 536\\ 1,125\\ 1,060\\ 5\end{array}$                                                                                     | 38<br>53<br>38<br>38<br>46<br>35<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>59                         | 3<br>50<br>74<br>997<br>335<br>92<br>0<br>21<br>669<br>422<br>3<br>59<br>8<br>23<br>2<br>225<br>473<br>445<br>3                                                                | 0<br>0<br>0<br>1,760<br>268<br>0<br>0<br>0<br>244<br>211<br>0<br>0<br>0<br>0<br>0<br>251<br>775<br>365<br>0                                                     | -3<br>-3<br>-50<br>-74<br>763<br>-67<br>-92<br>0<br>-21<br>-425<br>-210<br>-3<br>-59<br>-8<br>-23<br>-2<br>26<br>302<br>-80<br>-3                                                                                                                                        | Not Met<br>Not Met<br>Met NTHLB<br>Not Met<br>Not Met                                                                                                                                                                                          |
|            | Twin Total           | MHmm1 HB Med                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>2,119                                                                                                                                                                                       | 106<br>7,611                                                                                                                                                              | 110<br>9,729                                                                                                                                                                                                                  | 42                                                                                                                                     | 46<br>3,951                                                                                                                                                                    | 52<br>3,927                                                                                                                                                     | 5<br>-24                                                                                                                                                                                                                                                                 | Met N [HLB                                                                                                                                                                                                                                                                                                                                                                                    |

| MO<br>2009 | Landscape Unit | Site Series<br>Surrogate | THLB<br>(ha) | PFLB<br>non<br>THLB<br>(ha) | Total<br>PFLB<br>(ha) | Old<br>Growth<br>Target<br>(%) | Target<br>Area<br>(ha) | Current<br>Old<br>Growth<br>Area<br>(ha) | Surplus<br>/ Deficit | Current<br>Condition |
|------------|----------------|--------------------------|--------------|-----------------------------|-----------------------|--------------------------------|------------------------|------------------------------------------|----------------------|----------------------|
| SCC T      | otal           |                          | 41,066       | 119,555                     | 160,621               | 39                             | 60,835                 | 109,005                                  | 48,170               |                      |
| Total      |                |                          | 140,297      | 510,433                     | 650,729               | 38                             | 250,979                | 432,591                                  | 181,612              |                      |